Property Evaluation Report MODULAR BUILDING ASSESSMENT & CRITICAL REPAIRS Project Number 2016-286 Tumwater, Washington

Washington State Department of Enterprise Services

Ehm Architecture Inc. 1200 Fifth Avenue, Suite 1208 Seattle, WA 98101

July 5, 2016

MODULAR BUILDING ASSESSMENT AND CRITICAL REPAIRS

Project Number 2016-286 Tumwater, Washington

Table of Contents

TAB	ITEM	Page
1	Executive Summary	3
2	Architectural	6
3	Mechanical	26
4	Structural	44
5	Electrical	60
6	Cost Estimate	68
7	Appendix	70
	Appendix 7A – Roof Inspection Report	71
	Appendix 7B – Dock Leveler Report	84
	Appendix 7C – Cooling Tower Calculations	87
	Appendix 7D – Mezzanine Storage Capacity Calculations	96
	Appendix 7F – Modular Building Racks Memorandum	114
	Appendix 7G – Investment Grade Energy Audit	116
	Appendix 7H – Sewer Piping Maps	169
	Appendix 71 – 1999 Isabella Bush Soils Report	176
	Appendix 7J – Tier 1 Seismic Study Checklist	180
	Appendix 7K – Tier 2 Seismic Study Structural Calculations	184

Introduction: Ehm Architecture was engaged by DES in March 2016 to perform a Building Assessment, to report on our findings and to make recommendations for emergency repairs. This assessment covers Architectural, Mechanical, Structural and Electrical Systems. Each recommended repair is listed as a separate line item, which includes estimated cost of repairs and priority level. The priority levels are offered for the benefit of DES, to assist with determination of which items will be included in its legislative funding request for its 10-year capitol plan.

Architectural: The original roof system was installed as part of the original building construction in 1980, was repaired in 1992 and was replaced in 2000. The roof repair has outlived its useful service life, and is recommended for full replacement. The exterior finish of the building has deteriorated over time, with minor damage to exterior insulating panels and failure of thermal and weatherproofing seals between panels. We recommend repair of damaged panels, replacement of panel seals and painting of the building exterior. Dock levelers have either outlived their useful service life, or require preventative maintenance and repair. Overhead rolling door assemblies have outlived their useful service life and need to be replaced.

Ship's ladders do not meet current building codes, and constitute a potential hazard to facility employees. They are therefore recommended for replacement. Concrete ramps, guardrails and Accessible Path of Travel at the building entry do not comply with ADA Accessibility and Building Code Regulations. They are recommended for replacement or reconstruction to achieve full compliance. Current site drainage and lack of storm drains in the parking lots result in ponding of water adjacent to the building and in the easterly parking lot. These conditions have significant potential to undermine the building foundation, and have accelerated degradation of the asphaltic parking lot. We recommend remedial grading with new paving at these areas.

Mechanical – Outside air is insufficient to control indoor fumes and odors from printing processes. Intake air volumes are recommended to be adjusted accordingly. Air handling units violate current State Energy Code, and are to be replaced. This replacement will require air terminal units and ductwork to be replaced as well. The cooling tower and hydronic system has outlived their useful service life, and should be replaced. Various components of the HVAC system are either in disrepair or are inadequate for their intended purpose. These items should be replaced. There are insufficient cleanouts for the main sewer line at the south side of the building and the four sewer laterals entering the building from the east, making inspection and maintenance difficult. We recommend installation of new cleanouts on the main sewer lines and laterals. Sanitary sewer main and lateral piping exhibit evidence of moisture and sedimentary intrusion at the joints. We recommend relining larger pipes and replacing smaller pipes. Some roof drain assemblies and rainwater leaders in the Low Bay area are not properly insulated, allowing heat loss through the piping. We recommend insulating those elements to improve overall energy efficiency.

Structural – The existing parapet is not adequate for fall protection and does not meet current building code for life safety. We recommend vertical extension of the parapet. Cooling tower fall restraint is inadequate, but this condition will be rectified through the planned replacement of the cooling tower with low-rise, roof-mounted cooling equipment. The mezzanine structural system is inadequate for posted loading capacity, so we recommend that the posted capacity be lowered to reflect the design capacity. Storage racks appear to be overloaded beyond their design capacities. We recommend limiting rack loading to maximum design capacity. The building's structural system is inadequate to resist code-prescribed lateral loading in a seismic event. Given the building use's importance in a significant, regional earthquake event and the State's need to keep it operational, we recommend structural retrofits to strengthen the building to code-prescribed levels.

Electrical – We recommend preventive maintenance of electrical equipment, to extend its useful service life and to prevent hot spots and overloads. Replacement of the power distribution system is not warranted at this time, and will continue to function with the system maintenance recommended. From among our recommended options to maintain, upgrade or replace the existing lighting system, DES has opted to maintain the existing lighting system.

2. ARCHITECTURAL

I. INTRODUCTION

A. Ehm Architecture inspected architectural components of the Modular Building on April 26, 2016. The Scope of Work included assessment of building envelope (roof system, exterior finish and panel seals), overhead rolling doors, loading dock levelers, building code life safety issues, ADA compliance and deferred maintenance.

B. GENERAL DESCRIPTION OF THE EXISTING STRUCTURE

The Modular Building consists of a low-bay element to the north (photograph 1/AA-1), and a high-bay element to the south (photograph 2/AA-1). The high-bay Isabella Bush Records Center exists south of the Modular Building, and was excluded from this assessment at the direction of Department of Enterprise Services (DES) project management staff.

AGE: Built in 1980, the modular structure is approximately thirty-six years old.

CONDITION: The building is in good condition, with the exception of several items as further outlined herein.

ADEQUACY OF COMPONENTS: Adequacy of components varies according to individual components and their relationship to the assemblage as a whole. Individual building components are addressed in detail in the descriptions that follow this section.

REMAINING SERVICE LIFE: Through a program of preventive maintenance, and through critical repair and upgrade of building components and systems as outlined herein, this building should have a remaining service life of approximately fifty years. The remaining service lives of individual building components are listed in the corresponding sections of this report.

BUILDING ENVELOPE

Roof System

The original built-up roofing system, installed in 1980, was repaired in 1992. The building was completely re-roofed with the existing PVC membrane system in summer of 2000 (photographs 3/AA-2 and 4/AA-2). While no warranty information was obtained during our initial archives search, we are aware that a common warranty period for PVC membrane roofing systems typically ranges from 15 to 20 years. In that respect, it is reasonable to assume that the existing membrane roofing system has reached or is nearing the end of its useful and/or warranteed service life.

Our inspection of the roof system yielded issues and raised concerns which are consistent with those identified and quantified in the <u>Inspection Report</u> by Wayne's Roofing Inc. of October 2015 (Appendix A). It is not known to Ehm Architecture to what extent their recommended temporary repairs may have been made, but anything other than a warranteed application should be considered as strictly temporary.

The low bay roof supports two large air handlers (photograph 5/AA-3) and a cooling tower (photograph 6/AA-3). The high bay roof supports two large air handlers (photograph 7/AA-4), a roof hatch (photograph 8/AA-4), smoke ventilators (photograph 9/AA-5) and exhaust fans (photograph 10/AA-5). Both roof areas are bounded by parapets, which while ranging in height are inadequate to provide fall protection as required by code (photographs 11/AA-6 and 12/AA-6). The adjacent Isabella Bush Building, which is not within the scope of this assessment, features a guardrail which is code-compliant and which represents a good example of a potential design solution to the inadequate parapet height on the Modular Building roof (photograph 13/AA-7).

Exterior Finish

Typical exterior walls are finished with insulated metal panels (photograph 14/AA-7). Numerous areas of mold growth and discoloration are evident around the building (photograph 15/AA-8). Two areas of damage to insulated panels were noted, one on the east side of the building adjacent to the loading docks (photograph 16/AA-8).

MODULAR BUILDING ASSESSMENT ARCHITECTURAL - A1

Panel Seals

Panel seals were reported by facility maintenance staff to be largely in disrepair and/or failing. This issue is consistent with the age of the building and normal degradation of the building materials used to achieve panel seals when built.

Dock Levelers

Dock levelers were reported by Facilities Maintenance staff to be in various degrees of functionality and disrepair. Our inspection included an onsite evaluation by Industrial Hydraulics (IH) of Tumwater. Their report is included herein as Appendix B.

In summary, Leveler #1 was inoperable, so could not be evaluated. IH noted that the leveler appears to be original equipment, and not a replacement model as are some others. Leveler #2 (photograph 17/AA-9), which also appears to be original, is operational but in need of repair. Leveler #3 (photograph 18/AA-9) is newer in appearance and of a different configuration than Levelers # 1 and 2. In that sense, it appears to be a replacement model. It is in good working order. The appearance and configuration of Leveler #4 (photograph 19/AA-10) is similar to that of Leveler #3, suggesting that this may also be a replacement model. IH noted that the small cylinder which would operate the lip extender is not operational.

Overhead Rolling Doors

Overhead rolling doors (photograph 20/AA-10) have outlived their useful service life. Facility maintenance staff reports that broken springs and failing motors are a common occurrence.

Building Code Life Safety Issues

Ship's ladders to the Mezzanine (photograph 21/AA-11) have a riser height of 12 inches (photograph 22/AA-11), which significantly exceeds the current code maximum height of 9-1/2 inches. Further, current code only allows for ship's ladders to be used at areas not exceeding 250 square feet. The existing mezzanine areas far exceed 250 square feet.

SITE

Concrete Ramps at Entry

Disabled-access ramps adjacent to the westerly building entries (photograph 23/AA-12) are noncompliant with current ADA guidelines, which constitute a potential liability to the State of Washington. In particular, visual detection devices adjacent to the ramps and adjacent to parking areas are inadequate to inform vision-disabled individuals of existing hazards.

Guardrails at Entry

Under current code, guardrails for landings above 30 inches in height may have a maximum sphere spacing of 4 inches to prevent small children from slipping through or getting their heads stuck in vertical or horizontal members of guardrails. The existing guardrails (photograph 24/AA-12) have vertical members approximately 12 inches apart, which – although it may be unlikely for small children to access the entry areas – constitutes a hazard to such individuals, which could potentially expose the State to liability. The stair guardrails do not meet the handgrip requirement of a stair handrail, and the horizontal return at the bottom stair tread does not meet current code.

Path of Travel at Parking Lot

Visual detection devices are required under current code, at walking surfaces which are directly adjacent to parking areas. A ramp from the entry stair toe to the parking area is unprotected (photograph 25/AA-13), with no warnings to the visually-impaired that they are about to enter a vehicular way.

Site Drainage

Visual observation of the parking area east of the building revealed that the site does not have adequate stormwater drainage. Where one would normally expect to find catch basins (at the low point of paving slopes), none exist. The existing asphalt paving shows evidence of ponding, which was confirmed by facility maintenance staff. An aerial image from Google Earth also serves as evidence

MODULAR BUILDING ASSESSMENT ARCHITECTURAL - A2 in this regard. Such ponding accelerates deterioration of asphalt and potentially undermines it. It also renders parking spaces either unusable, and creates a potential nuisance by causing staff or visitors to unwittingly step into standing water during and after rain events. Such a nuisance could result in lost time for workers, as they would have to dry their shoes, socks and feet to safely and comfortably perform their duties. Water ponds at the west side of the building (photograph 26/AA-13), directly adjacent to the building foundation, which creates potential for settlement and/or undermining of building foundations.

C. CONSTRUCTION

BUILDING CODE

The building was built under the 1979 Edition of the <u>Uniform Building Code</u> by the International Conference of Building Officials, and the 1976 <u>Uniform Fire Code</u>. **Occupancy Type:** B-2 **Construction Type:** V –N (NOTE: A fire alarm system was added in 2005).

• EXISTING DRAWINGS

Record drawings were obtained from DES archives.

ORIGINAL PROJECT TEAM - 1979 Original Owner: Department of General Administration **Division of Engineering & Architecture** Original Consulting Engineer/Planner: Victor O. Gray & Company Original Interior Space Planner: Marvin Stein & Associates Original Mechanical / Electrical Engineer: Valentine, Fisher & Tomlinson Original Soils Engineer: Neil H. Twelker & Associates Original Landscape Architect: Richard Haag & Associates Original Contractor: Unknown **ROOF REPAIR PROJECT TEAM - 1992** The BJSS Group Architect: **ROOF REPLACEMENT PROJECT TEAM - 2000** Masini Sanford Gabrielse & Schoenfeldt Architect: Contractor: **Roof Toppers**

II. PROBLEMS TO BE CORRECTED AT THIS TIME

NOTE: See end of this section for listing and description of Priority Levels which are indicated below.

1. PUBLIC HAZARD

PROBLEM: Ramps at Entry

Visual detection devices are non-existent at the top of the main entrance ramps. While current code would only require ADA compliance if the building is modified, the lack of warning devices constitutes a hazard to the public – and a potential liability to the State - and should be corrected. **SOLUTION**: Grind warning grooves into the concrete slab at the top of both ramps, or sawcut and replace slab as required to provide grooves.

QUANTITY: 8 linear feet x 12" wide COST: \$ 2,518 PRIORITY LEVEL: 1

PROBLEM: Guardrails at Entry

Under current code, guardrails for landings above 30 inches in height may have a maximum sphere spacing of 4 inches, to prevent small children from slipping through or getting their heads stuck in vertical or horizontal members of guardrails. This constitutes a hazard to the public – and a potential liability to the State - and should be corrected.

SOLUTION: Remove existing guardrails and install compliant guardrails

QUANTITY: 60 linear feet x 42" high

COST: \$ 11,897 **PRIORITY LEVEL:** 1

PROBLEM: Path of Travel at Entry

Lack of visual warning devices at the entrance walkway leading to the parking lot constitutes a hazard to the public – and a potential liability to the State - and should therefore be corrected.

SOLUTION: Grind warning grooves into the concrete slab at the top of the ramp leading to the vehicular way, or sawcut and replace slab as required to provide grooves.

QUANTITY: 12 linear feet x 12" wide COST: \$ 793 PRIORITY LEVEL: 1

2. BUILDING REPAIR AND MAINTENANCE

PROBLEM: Damaged Insulated Panels

Two Insulated panels are damaged, allowing moisture intrusion and thereby compromising the integrity of the panels.

SOLUTION: Remove and replace damaged panels. QUANTITY: 2 panels @ 30" wide x 17'-4" high COST: \$ 8,290 PRIORITY LEVEL: 2

PROBLEM: Insulated Panel Finish

Panels exhibit mold growth and discoloration. DES staff has requested inclusion of exterior painting in the critical repair scope of work.

SOLUTION: Clean, prime and paint existing insulated panels with elastomeric paint.

QUANTITY: x square feet COST: \$ 150,647 PRIORITY LEVEL: 3

PROBLEM: Failing Panel Seals

Panel seals are in disrepair and/or failing. SOLUTION: Remove, clean adjacent surfaces and install new panel seals. QUANTITY: 10,086 linear feet COST: \$ 46,665 PRIORITY LEVEL: 2

> MODULAR BUILDING ASSESSMENT ARCHITECTURAL - A4

PROBLEM: Dock Levelers

Levelers #2, 3 and 4 require maintenance and/or repair, per the <u>Inspection Report</u> by Industrial Hydraulics (Appendix B).

SOLUTION: Perform maintenance and repair of dock levelers as recommended,

QUANTITY: Per Appendix B.

COST: \$ 6,760 PRIORITY LEVEL: 1

PROBLEM: Overhead Rolling Door Failure

Overhead rolling doors have outlived their useful service life. Facility maintenance staff reports that broken springs and failing motors are a common occurrence.

SOLUTION: Remove and replace overhead rolling doors.

QUANTITY: (6) 11' wide x 12' high overhead coiling rolling doors complete with motors, hardware and operating devices.

COST: \$ 65,435 **PRIORITY LEVEL:** 2

3. CONSULTANT RECOMMENDATIONS

PROBLEM: Aging Roof System

The 2000 reroofing system has outlived its useful service life, and should be replaced with a new PVC roofing system with 20-year warranty.

SOLUTION: Demo and replace existing roofing system. Repair damage to insulation and /or structural members below as necessary.

QUANTITY: 105,600 square feet COST: \$ 1,961,441 PRIORITY LEVEL: 3

PROBLEM: Inoperable Dock Levelers

Leveler #1 is inoperable, due to an electrical problem. The leveler appears to be original construction. As two other original docks have been previously replaced, Ehm Architecture recommends replacing Leveler #1.

SOLUTION: Remove and replace existing dock leveler.

QUANTITY: 1 leveler complete with hydraulics and electric motor.

COST: \$ 11,194 **PRIORITY LEVEL:** 2

PROBLEM: Noncompliant Ship's Ladders

Ship's ladders are 33% steeper than required by current code, and service mezzanine areas which far exceed the current area allowed to be served by ship's ladders. For practicality and for the safety of facility staff, we recommend the replacement of two ship's ladders with compliant stairs.

SOLUTION: Remove and replace two ship's ladders with 42" wide code-compliant steel stairs with handrails and guardrails, one at each mezzanine.

QUANTITY: 2 COST: \$ 18,507 PRIORITY LEVEL: 1

PROBLEM: Lack of Parking Lot Drainage

Lack of storm drainage facilities at the east and west parking lots creates ponding water. Water ponds at the west side of the building, directly adjacent to the building foundation.

SOLUTION: Remove asphalt, perform remedial grading to facilitate sheet drainage to adjacent retention ponds, repave and restripe parking lot.

QUANTITY: 82,200 square feet COST: \$ 580,849 PRIORITY LEVEL: 5

> MODULAR BUILDING ASSESSMENT ARCHITECTURAL - A5

PRIORITY LEVEL DESCRIPTIONS

Level 1: Critical life safety and hazardous issues which should be addressed immediately, as emergency repairs.

Level 2: Critical issues which, if not immediately repaired or replaced would continue to cause deterioration of or damage to the existing structure or building materials.

Level 3: Significant issues which, if not soon repaired or replaced (within one to two years) may continue to cause deterioration of or damage to the existing structure or building materials.

Level 4: Moderate issues which, if not soon repaired or replaced may continue to cause deterioration of or damage to the existing structure or building materials, but which could serve their intended purpose for a limited time (one to two years).

Level 5: Minor maintenance issues requiring preventative maintenance, cleaning and/or monitoring, or items which could be deferred beyond two years and/or as funding allows.

I HEREBY CERTIFY THAT THIS DOCUMENT WAS PREPARED BY ME PERSONALLY, AND THAT I AM A DULY REGISTERED ARCHITECT IN THE STATE OF WASHINGTON.

Low Bay Section of Modular Building PHOTOGRAPH 1

<u>High Bay Section of Modular Building (Isabella Bush Building at right)</u> <u>PHOTOGRAPH 2</u>

MODULAR BUILDING ASSESSMENT

Low Bay Roof PHOTOGRAPH 3

<u>High Bay Roof</u> <u>PHOTOGRAPH 4</u>

MODULAR BUILDING ASSESSMENT

Low Bay HVAC Equipment PHOTOGRAPH 5

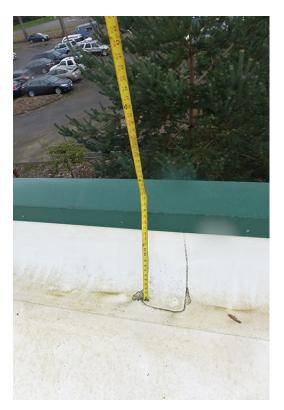
Low Bay Cooling Tower PHOTOGRAPH 6

MODULAR BUILDING ASSESSMENT

High Bay HVAC Equipment PHOTOGRAPH 7

High Bay Roof Hatch PHOTOGRAPH 8

MODULAR BUILDING ASSESSMENT



High Bay Ventilator PHOTOGRAPH 9

High Bay Exhaust Fan PHOTOGRAPH 10

MODULAR BUILDING ASSESSMENT

Unsafe Parapet Height PHOTOGRAPH 11

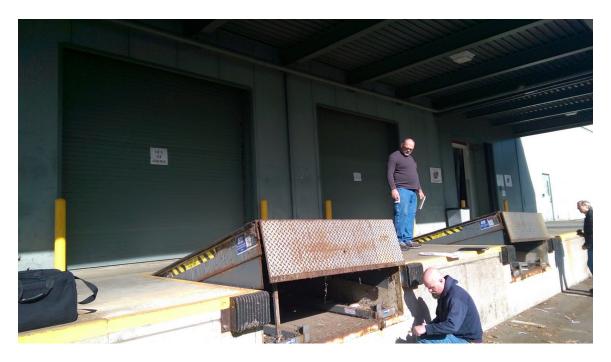
Unsafe Parapet Height PHOTOGRAPH 12

MODULAR BUILDING ASSESSMENT

Fall-Protection Guardrail at Adjacent Isabella Bush Building PHOTOGRAPH 13

Insulated Panels at High Bay PHOTOGRAPH 14

MODULAR BUILDING ASSESSMENT



Insulated Panel Mold Growth and Discoloration <u>PHOTOGRAPH 15</u>

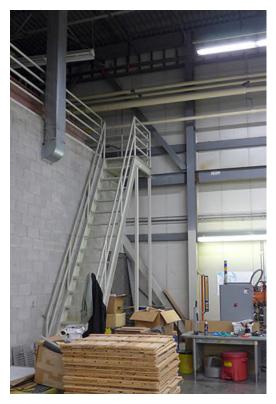
Damaged Panel at Loading Dock PHOTOGRAPH 16

MODULAR BUILDING ASSESSMENT

Dock Leveler #2 PHOTOGRAPH 17

Dock Leveler #3 PHOTOGRAPH 18

MODULAR BUILDING ASSESSMENT



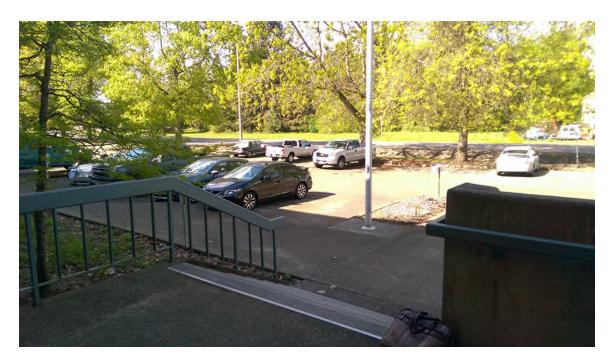
Dock Leveler #4 PHOTOGRAPH 19

Overhead Rolling Door PHOTOGRAPH 20

MODULAR BUILDING ASSESSMENT



Ship's Ladder to Mezzanine PHOTOGRAPH 21



PHOTOGRAPH 22

MODULAR BUILDING ASSESSMENT

Ramp at Entry PHOTOGRAPH 23

Guardrail at Entry PHOTOGRAPH 24

MODULAR BUILDING ASSESSMENT

Path of Travel at Vehicular Way PHOTOGRAPH 25

Ponding at Building Wall PHOTOGRAPH 26

MODULAR BUILDING ASSESSMENT

Wechanical

3. MECHANICAL

I. INTRODUCTION

A. The Greenbusch Group performed an inspection of the Modular Building mechanical systems on 4/26/16. On 5/4/16 and 6/1/16, Flohawks Plumbing and Septic conducted video inspections of the sanitary waste pipes for the building. The results of these inspections are included below.

B. GENERAL DESCRIPTION OF THE EXISTING FACILITY

AGE: Approximately 37 years

CONDITION: Several of the building's mechanical systems are deteriorating due to age, as detailed below.

ADEQUACY OF COMPONENTS: Adequacy of components varies according to individual components and their relationship to the assemblage as a whole. Individual mechanical components are addressed in detail in the descriptions that follow this section.

REMAINING SERVICE LIFE: A number of the building's mechanical systems have been partially or completely replaced at various stages in the history of the building. As a result, there is significant variability in the condition and life expectancy of the building's various pieces of mechanical equipment. The remaining service lives of individual mechanical components are listed in the corresponding sections of this report.

Specific problems, along with proposed solutions, approximate costs for addressing the issues, and the priority level of each item, are presented in the subsequent section, "Problems to be Corrected at This Time".

MECHANICAL SYSTEMS

Air Handlers

The facility is served by four rooftop air handling units (AHU's)—two for the High Bay and two for the Low Bay (photograph 01/MM-1). The air handlers are original to the building and employ dual-deck hydronic heating and cooling. This type of conditioning is not permitted under current energy code. The insulation and interior of the AHU's are deteriorating due to water infiltration. All of the AHU's are past their useful service lives at this point. However, all four air handlers have had their fan motors and variable frequency drives (VFD's) replaced recently (within the last one to two years) and, if salvaged, these components may have up to 20 years of service life remaining. However, the motors and VFD's may suffer shortened lifespans due to the noted water infiltration.

The low bay roof also houses two smaller air handling units (photograph 02/MM-1), which are dedicated to a secure section of the building. These units are relatively new and associated with a portion of the structure that is outside of the scope of this assessment.

Chiller and Cooling Tower

A centrifugal chiller (photograph 03/MM-2) and a cooling tower (photograph 04/MM-3) provide cold water to the cooling coils of the air handling units. The cooling tower has a chemical treatment system in place (photograph 05/MM-4). The existing chiller and cooling tower and their associated pumps were installed in 2001. The chiller has up to approximately 10 years of service life remaining, with proper maintenance. The cooling tower is having corrosion and leakage issues and is likely within its last five years of useful service.

Boilers and Circulation Pumps

Two hot water boilers (photograph 06/MM-5) are currently in place, providing heating water both to the unit heaters in the building and the AHU's on the roof. At the time of the inspection, one of the boilers was out of service for repairs. Both boilers date to the early 1990's but have newer model Honeywell controllers. The boilers are currently past their useful service life. The hot water circulation pumps (photograph 07/MM-5) associated with each boiler have motors that were replaced within approximately the last two years and should have another 15 years of life remaining.

MODULAR BUILDING ASSESSMENT MECHANICAL - M1

Pipes and Distribution

A hydronic piping system (photograph 08/MM-6) distributes hot water from the boilers to the AHU's and unit heaters, and cold water from the chiller to the cooling tower and the AHU's. The hydronic piping suffers from poor sealing throughout the building and reportedly leaks in multiple locations if the water temperature is permitted to drop below 90 degrees Fahrenheit. Based on scaling and rust that is visible at fittings where leaks previously occurred, the interior condition of the piping is likely very corroded and deteriorated. The heating water piping is well past its useful service life and should be replaced.

As noted above, Flohawks Plumbing and Septic conducted video inspections of the sanitary waste pipes for the building. Appendix 7H includes record drawings of the exterior and interior belowgrade waste pipes. The pipes that were inspected by video camera are indicated in red. Those not marked with red were either inaccessible for scoping or were found to be non-existent or decommissioned. Scoping of the sanitary waste piping shows that the main lines are a combination of cement pipes and PVC pipes, and the laterals are PVC pipe with glued joints. There are some signs of groundwater infiltration at the joints, as indicated by the volume of water that is in the pipes even when no fixtures are in use (photograph 09/MM-6, and photographs 10 and 11/MM-7). In addition, the inspection revealed that, over a 20 foot section of one of the lateral waste lines, the pipe slopes backward (into the building) at a grade of about .45 inches per foot (see Sanitary Waste Piping Map, Low Bay, Appendix-7H-2). This condition can hamper flow and contribute to blockages, creating a maintenance issue. However, barring any significant change in use for the building, The PVC waste piping is still expected to have a remaining useful service life of 20 years or more.

The local waste piping that connects the restroom fixtures to the lateral lines is composed of cast iron. These pipes show an expected amount of pitting and oxidation for their age, and some accumulation of refuse locations (photographs 12 and 13/MM-8). However, the inspection did not indicate the presence of immediate issues such as blistering, cracking, or significant buildup of rust. The cast iron piping should continue to serve for up to approximately 10 more years. It is recommended that the waste system be hydro-jetted approximately every two years to clear any accumulation and prevent blockages.

There is also a now-abandoned network of steam piping (photographs 14/MM-9 and 15/MM-10) throughout the facility. This piping is no longer in use but appears to be entirely iron, which has made its removal a difficult proposition.

Terminal Units and Ductwork

The facility contains a total of approximately 78 dual-deck air terminal units (photograph 16/MM-11) which are original to the building. These units have newer electronic controls and actuators. These units are not fan-powered; they modulate the hot and cold air volumes via motor-actuated dampers. The majority of the ductwork is original to the building and therefore somewhat leaky. Most of it is insulated sheet metal or flex duct, however many of the sections of rectangular duct that connect with the terminal units in the Low Bay area are reportedly constructed entirely of duct board, which makes them fragile. Left undisturbed, the terminal units and their associated ductwork could continue to serve for up to another 10 years. However, if the AHU's are upgraded, it will be necessary to replace the terminal units and ductwork as well, because their design capacity and layout are specific to the existing dual-deck HVAC system.

Unit Heaters and Pneumatic Valves

The facility contains seven horizontal unit heaters (photograph 17/MM-11) and seven verticallydischarging "heat curtain" style heaters (photograph 18/MM-12), all of which employ hot water heating coils and electric fans. The heaters should be capable of serving for another five years. However, the hot water valves for all of these units are controlled by pneumatic valve actuators supplied by a dedicated air compressor. The only other known pneumatic actuators in the facility are two valve actuators that are on hot water pipes in the boiler room. All of these pneumatic valves are past their useful service lives.

> MODULAR BUILDING ASSESSMENT MECHANICAL - M2

Humidification

There are seven Nortec Airfog humidification units installed in the High Bay area (photograph 19/MM-12). The units were installed in 2001 and have proven prone to leaking and breaking down. It is unlikely that their existing configuration is adequate to prevent microbial growth and their lack of dependability means the humidity level in the print shop is likely sporadic. These units are reportedly the property of the Print Shop and their replacement is therefore outside of the scope of this project. However, they are supplied with water by the domestic plumbing system and it is unknown if they currently have adequate backflow prevention in place.

As noted above, there is also a decommissioned steam system still in place which appears to have been formerly used for humidification. This includes a steam boiler, condensate trap, condensate pump, filtration system, and steam piping throughout the facility, all of which is currently unused. This system was most likely decommissioned in 2001 when the Nortec humidification units were installed.

Controls

The HVAC systems, with the exception of the unit heaters and humidifiers, are controlled by a Metasys Building Automation System (BAS), by Johnson Controls.

C. CONSTRUCTION

• MECHANICAL CODE

The building was built under the 1979 Edition of the Uniform Mechanical Code.

• EXISTING DRAWINGS

Record drawings from the original 1979 construction were obtained from the Owner, as well as control drawings from the boiler replacement.

II. **PROBLEMS TO BE CORRECTED AT THIS TIME**

1. CODE ISSUES

PROBLEM: The current volume of outside air being supplied to the High Bay area is not sufficient to control fumes and odors.

SOLUTION: Increase the minimum outside air settings for the Print Shop and confirm that the volume of exhaust air is sufficient for this facility.

COST: \$6,750 PRIORITY LEVEL: 1

PROBLEM: The current air handling units are dual-deck systems which provide both hot and cold air, which is then mixed at the zone level to produce the desired supply air temperature. This system violates current Washington State Energy Code section C403.4.4 which restricts the heating of previously cooled air and/or the cooling of previously heated air.

SOLUTION: When the AHU's are replaced, a code-compliant single-duct system will need to be installed. This will also require replacement of all of the existing dual-deck air terminal units and associated ductwork throughout the facility.

COST: \$1,000,927 **PRIORITY LEVEL:** 3

PROBLEM: The High Bay humidifiers are connected to the domestic water system and it is unknown if code compliant backflow prevention has been installed.

SOLUTION: Install backflow prevention in the humidification system per plumbing code, if it does not exist.

COST: \$4,500 **PRIORITY LEVEL:** 2

2. **PUBLIC HAZARD**

PROBLEM: As noted under Code Issues, the current volume of outside air being supplied to the High Bay area is not sufficient to control fumes and odors.

SOLUTION: See Code Issue, item #1, above.

COST: See Code Issue, item #1, above. PRIORITY LEVEL: 1

PROBLEM: All of the original AHU's have outside air louvers that are not wind-driven rain resistant and, as a result, rainwater is infiltrating the units and leaving standing water inside the AHU. This condition is causing corrosion and deterioration of the insulation and filters, as well as presenting an electrical hazard and the potential for indoor air quality issues such as mold (photograph 20/MM-13). SOLUTION: Provide wind-driven rain protection until the air handlers are replaced with new units.

COST: \$11,250 **PRIORITY LEVEL:** 1

BUILDING MAINTENANCE 3.

PROBLEM: Hot water boiler H-2 is prone to false alarms in the controls system and randomly tripping faults which do not appear related.

SOLUTION: Check controls programming, wiring, and sensors for source of recurring issues. **COST:** \$7,500

PRIORITY LEVEL: 2

PROBLEM: The chiller capacitors are reportedly failing, though no specific issues were noted at the time of the inspection.

SOLUTION: Assess chiller capacitors with manufacturer's local representative and replace if needed. COST: \$7,500

PRIORITY LEVEL: 3

MODULAR BUILDING ASSESSMENT MFCHANICAL - M4

PROBLEM: AHU supply fans typically ramp up to a static pressure of 3" WC in response to a single call for cooling, regardless of other calls in the system.

SOLUTION: Adjust controls programming so that fans provide a more measured response to cooling calls.

COST: \$30,000 PRIORITY LEVEL: 3

PROBLEM: There is some accumulation of effluent and silt in the waste pipes which can inhibit flow and eventually develop into blockages.

SOLUTION: Have the waste piping hydro-jetted to clear it of buildup. COST: \$69,300 PRIORITY LEVEL: 4

PROBLEM: Sanitary sewer piping main lines and laterals show some signs of groundwater and silt infiltration at the joints.
SOLUTION: Re-line the waste piping to eliminate infiltration.
COST: \$33,750
PRIORITY LEVEL: 4

4. CONSULTANT RECOMMENDATIONS

PROBLEM: Heating water boilers H-1 and H-2 are past their useful service lives and prone to leaks.
SOLUTION: Replace boilers.
COST: \$212,626
PRIORITY LEVEL: 2

PROBLEM: Hydronic system pipes and fittings show signs of rust, corrosion, and leakage. (photograph 21/MM-14) The boiler system has to be run at all times at a minimum of 90 degrees Fahrenheit in order to cause enough thermal expansion in the pipes and fittings to prevent leaks. The cooling tower is showing corrosion and has been repaired repeatedly due to leaks (photograph 22/MM-14).

SOLUTION: Replace the cooling tower, as well as hydronic piping, fittings, and seals throughout the facility.

COST: \$841,896 PRIORITY LEVEL: 1

PROBLEM: Pneumatic valve actuators are still in use on unit heaters and two hot water pipes. Actuator components are becoming corroded (photograph 23/MM-15).

SOLUTION: Replace pneumatic actuators with electric motorized actuators, which will eliminate the need to keep and maintain the pneumatic system, as well as allowing the actuators to be monitored and controlled remotely via the building automation system, if desired.

COST: \$27,000 PRIORITY LEVEL: 2

PROBLEM: Low Bay ductwork is prone to leakage and appears to have some portions that are constructed of duct board rather than sheet metal.

SOLUTION: Replace ductwork and fittings throughout the Low Bay.

COST: \$411,262 **PRIORITY LEVEL:** 3

PROBLEM: There are not currently cleanouts on the sewer main at the south side of the building or the four lateral lines that enter the building from the east, making inspection and maintenance of the pipes difficult.

SOLUTION: Install cleanouts outside of the building on the main sewer lines and laterals. **COST:** \$2,400

PRIORITY LEVEL: 4

PROBLEM: One section of waste piping within the low bay slopes backward (into the building) for approximately 20 feet, at a grade of roughly .45 inches per foot. This condition can hamper flow and contribute to blockages, creating a maintenance issue.

SOLUTION: Re-grade the waste pipe so that it slopes downward toward where it exists the building. **COST:** \$ 26,400

PRIORITY LEVEL: 4

PROBLEM: Roof drain assemblies and rainwater leaders in some observed portions of the Low Bay are not insulated, which allows heat loss through the piping (photograph 24/MM-16).

SOLUTION: Insulate all roof drains and rainwater leaders to improve the energy efficiency of the space.

COST: \$5,625 PRIORITY LEVEL: 4

<u>Typical Air Handling Unit</u> <u>PHOTOGRAPH 01</u>

New Air Handling Unit PHOTOGRAPH 02

MODULAR BUILDING ASSESSMENT MECHANICAL MM-1

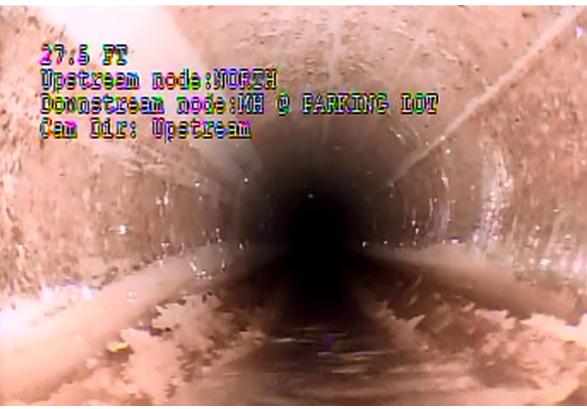
Centrifugal Chiller PHOTOGRAPH 03

MODULAR BUILDING ASSESSMENT MECHANICAL MM-2

Cooling Tower PHOTOGRAPH 04

Cooling Tower Treatment System PHOTOGRAPH 05

MODULAR BUILDING ASSESSMENT MECHANICAL MM-4


Heating Water Boiler PHOTOGRAPH 06

Heating Water Circulation Pump PHOTOGRAPH 07

Hydronic Piping PHOTOGRAPH 08

Sewer Main Line, PVC PHOTOGRAPH 09

Sewer Main Line, Cement PHOTOGRAPH 10



Sewer Lateral Line, PVC PHOTOGRAPH 11

09:27:45 AM / 06-01-2016

Waste Line, Cast Iron PHOTOGRAPH 12

Waste Line, Cast Iron PHOTOGRAPH 13

Abandoned Steam Piping PHOTOGRAPH 14

Abandoned Steam Condensate System <u>PHOTOGRAPH 15</u>

<u>Air Terminal Unit</u> <u>PHOTOGRAPH 16</u>

Horizontal Unit Heater PHOTOGRAPH 17

Vertically-Discharging Unit Heater PHOTOGRAPH 18

Humidification Unit PHOTOGRAPH 19


AHU Moisture Damage PHOTOGRAPH 20

Signs of Rust and Scale in Pipes PHOTOGRAPH 21

Cooling Tower Leak Damage and Patches (View of Bottom of Tank) PHOTOGRAPH 22

Pneumatic Valve Actuator PHOTOGRAPH 23

Roof Drain and Drain Piping, Uninsulated PHOTOGRAPH 24

ト Structural

4. STRUCTURAL

I. INTRODUCTION

- A. Peterson Structural Engineers (PSE) evaluated five locations/components of the Modular Building. PSE evaluated the following items:
 - Fall Restraint for the Low and High Roof
 - Cooling Tower Fall Restraint and Anchorage
 - Mezzanine Loading and Access
 - Storage Racks
 - Building Seismic Analysis

B. GENERAL CONDITION OF THE EXISTING STRUCTURE

Fall Restraint for the Low and High Roof

The height of the building parapet (both high and low bay buildings) is not sufficient to prevent falls from the roof. The minimum height required to adequately prevent falls and be considered a railing is 42" vertical (IBC 2012 Section 1013). Current vertical parapet heights vary from 12" (at roof "ridge") to approximately 41" (at roof corners) and follow the slope of the roof (photograph 1/SS-1). PSE understands that maintenance workers or contractors doing work on the roof are required to wear fall protection harnesses regardless of where the work being performed is located on the roof with the current parapet configuration.

To correct this deficiency, the height of the parapet should be increased or a railing added to comply with fall protection requirements. PSE has identified four options to provide code-compliant fall protection. Of these options, extending the parapet vertically is the preferred option.

i. **Extend Parapet** – This option involves extending the parapet vertically using cold form steel stud in a fashion similar to the existing detail. The existing parapet is supported vertically by a structural steel channel which runs around the perimeter of the building and is located below the roof framing (photograph 2/SS-1 and 3/SS-2). The parapet cold form studs run outboard of the perimeter roof framing and form the parapet. The full parapet section includes exterior insulated metal panels, the steel channel studs, wood sheathing backing and the roof membrane.

To extend the parapet, new cold form steel studs would be placed back to back with the existing studs (photograph 4/SS-2). The new studs would have a height/length such that the 42-inch minimum for railings is satisfied. The option would require peeling back the roof membrane so a positive connection could be made between the structural steel roof framing and the parapet members. See sketch SSK-1 in Appendix A for a proposed detail.

- ii. **New Pipe Railing** Install a new conforming pipe railing inboard of the existing parapet. The base of this pipe railing would need to be welded or bolted to the top flange structural steel roof framing. This option is highly intrusive and requires penetrating the roof membrane. Constructability is also a concern as the connection to the top flange of the steel roof beam would be difficult to access. The roof beam would also likely need to be braced for torsion along its length with kickers to neighboring structure.
- iii. New Roof Anchor Install a new roof anchor to the top of an existing interior column to provide an engineered tie-off point for workers/maintenance staff on the roof. This option would still require workers to be tied off to the structure. This option also requires penetrating the roof membrane. It is viable from a structural perspective but does not change the need for workers to tie off when working on the roof.
- iv. **Extend Perimeter Columns** This option creates a new railing by extending the existing perimeter columns vertically so a beam can span between them. This option also requires the roof

MODULAR BUILDING ASSESSMENT STRUCTURAL - S1 membrane to be penetrated. Besides an unappealing aesthetic, there are considerable constructability issues.

Cooling Tower Fall Restraint and Anchorage

The cooling tower (photograph 5/SS-3) requires scaffolding (photograph 6/SS-3) to access the upper portion of the equipment during maintenance. It is desired that permanent scaffolding and/or fall restraint could be added to the cooling tower so temporary scaffolding would not be required every time the equipment required maintenance. It was apparent during the site visits that it was not feasible or practical to add scaffolding or fall restraint to the existing equipment. Assuming the existing cooling tower is to remain, the temporary shoring still appears to be the best solution.

PSE was also tasked with determining the anchorage demands for lateral loading (wind and seismic) loading from the equipment that is transmitted to the structure below. The purpose of determining the anchorage demands was for evaluating the existing anchorage and support structure.

Four vertical pipe supports carry the weight of the cooling tower above. These pipes are welded to the joists located immediately below the cooling tower (photograph 7/SS-4). In addition to the four vertical pipes, the support frame utilizes four outriggers (photograph 8/SS-4) to widen the support at the base, increasing the lateral stability of the cooling tower support frame. The ends of the outriggers are not positively connected to the structure below and are not capable of transmitting any shear or tensile loads. They are only able to transmit vertical compressive loads to the structure (joist) during lateral events via direct bearing. Additionally, the cooling tower sits on four damping springs located at the corner of the base frame. It is assumed that these springs are included to damp out vibrations due to normal operation of the equipment. PSE conservatively considered these springs to be rigid when determining demands from wind and seismic loading.

The existing equipment and support structure was analyzed under current code level wind and seismic loading. Seismic loading was found to govern anchorage demands relative to wind loading. Seismic overturning demands were approximately 35% greater than wind demands. Detailed calculations can be found in Appendix B of this report.

Maximum shear load (EQ only) transferred by the pipe supports directly beneath the cooling tower is approximately 1,800 lbs. Maximum tensile load (EQ + DL) transferred by the pipe was approximately 1,300 lbs. and maximum compression (vertically downward) load (EQ + DL) was approximately 2,800 lbs. The welds at the base of the pipe were found to be sufficient to transfer the forces to the joist below. Maximum compression transmitted by the outriggers (vertically downward) was 2,700 lbs. As previously stated, the outriggers are not capable of transmitting shear or uplift forces.

Table S01 below summarizes the utilization ratios for the different directions of controlling seismic and wind loads. Note that four separate joists support reactions from the cooling tower. The utilization ratios presented below represent the single joist with the highest utilization ratio. "Uplift" loads represent cases all loads applied to the beam were uplift loads. Due to the support frame geometry this was only possible when the wind or seismic forces acted in the N/S direction. It was determined that maximum utilization ratios ranged from 0.16 to 0.61.

No corrective action is required or anticipated. The existing attachment of the equipment and supporting structure (joists) are adequate for the anticipated loads.

EAST-WEST DIRECTION			NORTH-SOUTH DIRECTION		
ITEM	DIRECTION	UTILIZATION	ITEM	DIRECTION	UTILIZATION
SEISMIC	UPLIFT	n/a	SEISMIC	UPLIFT	0.22
SEISMIC	DOWNWARD	0.61	SEISMIC	DOWNWARD	0.50
WIND	UPLIFT	n/a	WIND	UPLIFT	0.16
WIND	DOWNWARD	0.36	WIND	DOWNWARD	0.35

Table S01 – Cooling Tower Summary MODULAR BUILDING ASSESSMENT STRUCTURAL - S2

Mezzanine Loading and Access

The mezzanine platform located in the high bay building is currently posted for 125-psf allowable storage load. PSE was tasked to confirm this posting or provide recommendations for lesser loading if appropriate (photographs 9/SS-5 and 10/SS-5). It was determined that the safe allowable loading for the mezzanine should be reduced to 100-psf. The loading was controlled by the capacity of the open web steel joist. Detailed calculations are included as part of Appendix C. Note that the calculated 100-psf loading supports the 100-psf design live load listed in the existing drawings general notes (DES 79-244 sheet S1).

The mezzanine is accessed by a stair way and a steep "ship's ladder" (photograph 11/SS-6). Building staff tasked PSE with evaluating the existing railings for compliance with current railing code requirements. Railings for both the stairs and ship's ladder (photograph 12/SS-6 and 13/SS-7) were evaluated under requirements found in the 2012 IBC Chapter 10 (Means of Egress) and OHSA 3124-12R 2003 (Stairways and Ladders, A Guide to OSHA Rules). Railings for both elements met the railing requirements for stairs and ladders, respectively. Detailed analysis can be found in Appendix D.

Storage Racks

Some minor cracking has been observed around the existing storage racks (photograph 14/SS-7) near the mezzanine in the high bay building. PSE evaluated the cracking around the storage racks and believes that the cracking observed is normal for a concrete slab of that age and construction. It should also be noted that the concrete slab was evaluated in 2014 by AHBL and the existing concrete slab was also found to be adequate to support the storage loads.

PSE conducted an independent evaluation of the rack anchorage to the concrete slab under seismic loading following procedures found in ASCE 7-10 (Minimum Design Loads for Buildings and Other Structures) and the Rack Manufacturer's Institute (RMI) "Specification for the Design, Testing and Utilization of Industrial Steel Storage Racks". Assuming that each storage rack is anchored with (2) ½" diameter Hilti Kwik Bolt TZ expansion type anchors with 3.25-inch embedment (as PSE understands is common for these types of racks), the maximum product loading allowed per shelf is 85-psf or 2,640-lbs. The weight of the actual material being stored on the racks should be evaluated to confirm it is within the 2,640-lb per shelf limit. If the actual weight of product exceeds this load limit, the loads should either be reduced or the anchorage upgraded to comply with the increased demands. It should be noted that if the as-installed anchorage exceeds what has been assumed, additional product load capacity may be realized.

Whole Building Seismic Evaluation

PSE understands that no upgrades to the main lateral force resisting system (MLFRS) have been completed since the building was constructed in the early 1980's. The existing MLFRS utilizes a braced frame system with two braces typical on each side of the building. However, given the age and construction of the building, PSE anticipates that the detailing of these braces may not be adequate for current code prescribed loading (amongst other potential deficiencies).

As part of the building seismic evaluation, PSE performed both a Tier 1 and Tier 2 seismic screening per ASCE/SEI 41-13: Seismic Evaluation and Retrofit of Existing Buildings (ASCE 41). These two screenings involve following prescriptive procedures to evaluate potential issues with the MLFRS, diaphragms, and foundations.

The checklists in the ASCE 41 Tier 1 screening are differentiated by building type and are based on past observed performance of similar buildings. Each item in the checklist must be marked as "Compliant", "Noncompliant", "Not Applicable", or "Unknown". In accordance with ASCE 41, any checklist item that was identified as "Noncompliant" or "Unknown" was deemed deficient. A completed Tier 1 checklist is included as Appendix J of this report.

In order to consider the structural deficiencies determined during the Tier 1 screening in more detail, PSE also performed a Tier 2 evaluation. This evaluation was limited to the items identified as "non-

compliant" during the Tier 1 evaluation. Detailed calculations produced for this portion of the evaluation are included as Appendix K.

For the Tier 1 screening, PSE considered the modular building as shown in the as-built documents (dated 04/07/1980 and revised 06/26/1981) provided by the client. PSE also performed two site visits (April 26th, 2016 and June 13th, 2016) to observe the existing condition of the MLFRS. The main lateral force resisting systems in all directions are concentrically braced steel chevron frames (photograph 15/SS-8). The building was analyzed in two different portions: northern and southern (low and high bay, respectively). Each wall of the building has two 20-foot bays which contain frames. The remaining bays have steel gravity only frames to resist gravity loads. The high bay portion of the modular building has two stories of frames while the northern portion of the building only has one. The roof diaphragms for each portion consist of Type B 1½"-deep, 20 gage metal decking. Since there is no concrete topping, the diaphragms were assumed to be flexible. Table S02 shows the pertinent design criteria for the screening performed on the subject building.

CRITERION	VALUE	LOCATION IN ASCE 41
Common Building Type	Steel Braced	Table 3-1
	Frame (S2a)	
Structural Performance	Life Safety	Section 2.3
Level	(S-3)	
Level of Seismicity	High	Table 2-5
	$S_{D1} > 0.20g$	

Table S02 – Design criteria for seismic evaluation, per ASCE 41

From the table above, since the subject building has a MLFRS consisting of concentrically braced frames; it is defined by ASCE 41 as a common building type S2. The roof diaphragm is an untopped metal deck, which is defined as flexible in Table 3-1 of ASCE 41. This distinction means the building type is S2a, where the "a" indicates that the building has a flexible diaphragm.

A building that complies with the Life Safety structural performance level (given the designation S-3 by ASCE 41) may incur significant damage during a seismic event, but should not undergo partial or total collapse.

The level of seismicity was determined using site-specific acceleration data that was provided by the USGS Seismic Design Maps. This data was obtained by assuming Soil Site Class D (stiff soil). Table 2-5 of ASCE 41 requires the use of both design short-period spectral response acceleration, S_{DS} , and design spectral response acceleration at a one-second period, S_{D1} . Since the level of seismicity defined by S_{D1} controlled over the level defined by S_{DS} , this was the only value shown.

Per ASCE 41, a benchmark building is a building with a specific performance level that, if designed to a specific code, automatically complies with the Tier 1 screening procedure. According to the as-built documents, the subject building was designed according to the 1979 edition of the Uniform Building Code (UBC). However, for a building with steel concentrically braced frames and a Life Safety structural performance level, conformance to the 1997 edition (or later) of the UBC is required to satisfy the benchmark building requirement. The benchmark building criteria are given by Table 4-6 of ASCE 41.

The items listed below include the non-compliant or unknown statements from the requisite Tier 1 checklists provided in ASCE 41 and are updated with information from the Tier 2 study.

i. **SEPARATION BETWEEN ADJACENT BUILDINGS:** There are three distinct structures on site and are immediately adjacent to each other: the low and high bay modular buildings and the Isabella Bush Building located to the south of the modular buildings. The seismic joint between the low and high bay buildings (gridlines G & H) allows for 2" of movement between the two buildings (per sheet A9 of drawing set 79-244). The height to top of roof of the low bay building at grids G and H is 13'-7". ASCE 41 states that the distance between adjacent structures must be greater than 4% of the shorter building height to be considered compliant. Under this requirement, a

MODULAR BUILDING ASSESSMENT STRUCTURAL - S4 6.5-inch seismic joint is required. By inspection, the existing 2-inch seismic joint is undersized for a building of this height. While outside the scope of this evaluation, it is assumed that the joint between the high bay and Isabella Bush building is similarly undersized.

Providing a seismic joint which allows for the anticipated seismic movements appears to be the most desirable option to address the separation issue. This option would appear to be rather intrusive as approximately 240 linear feet of joint would need to be replaced to account for horizontal and vertical joints. Tying or linking the buildings together to behave as one structure is not realistic due to the discrepancy in building heights. Another option is to accept that damage to the buildings is likely to occur during a seismic event but that collapse is unlikely. For an S-3 performance level this would be acceptable as life safety is preserved.

ii. **SOIL LIQUEFACTION:** Per the Liquefaction Susceptibility Map for Thurston County (provided by the Washington State Department of Natural Resources), the subject building is located in an area that has a moderate susceptibility to liquefaction. Although the original construction documents state that existing soil be removed to a depth of ten feet and recompacted, and that another five feet of construction fill be placed on top of the recompacted native soil (DES 79-244 sheet C3), the Tier 1 requirement is that no liquefaction-susceptible soils be present within a depth of 50 feet.

There is no Tier 2 verification for the liquefaction requirement; however, ASCE 41 allows for the use of the liquefaction check in the Tier 3 evaluation (which is normally reserved for investigating the entire building). Per the geotechnical report included in the construction documents (DES 79-244 sheet C4), the underlying soil layer is medium dense, coarse to very coarse gravelly sand. This layer was present down to the maximum depth investigated, which was 24 feet below existing grade. The best-case estimated liquefaction susceptibility for this site is low. However, this site does not meet any of the criteria set forth in Section 8.2.2.2 of ASCE 41. These criteria dictate whether or not a site may be regarded as non-liquefiable.

Therefore, it is recommended that a new site-specific geotechnical investigation should be performed to confirm the liquefaction potential during a seismic event for this specific site. Future detailed retrofit design will require the consideration of the effects of liquefaction on the structure if liquefaction is likely.

- iii. **DIAPHRAGM TRANSFER TO STEEL BEAMS**: During the follow-up site visit, PSE was able to determine that the existing detail between the steel beams and diaphragm is able to transfer seismic loads into the MLFRS. No retrofit is anticipated to this area.
- iv. **BRACE CONNECTION STRENGTH:** Per the Tier 1 requirements, none of the brace connections have sufficient strength to develop the yield strength of the diagonal braces. Under the Tier 2 evaluation, demands for these connections were less stringent as they were based on limit-state analyses of the braced frames. None of these limit states were able to transmit a load large enough to cause the braces to yield. However, the demands on these connections were still greater than each connection's respective capacity.

Therefore, PSE recommends that brace frame connections be strengthened in order to increase their capacity. The connections may be strengthened by adding stiffener plates, anchor bolts, or welds, depending on the connection's specific configuration. A sample connection upgrade is shown in sketch SSK-2 in Appendix L.

- v. **WALL OUT OF PLANE CROSS TIES:** During the follow-up site visit, PSE was able to determine that the connection of the roof diaphragm and the wall is adequate for transferring out of plane loads. No retrofit is anticipated to this area.
- vi. VERTICAL IRREGULARITY: The original construction documents show two sets of stacked braced frames along each wall of the high bay building (DES 79-244 sheet S7). However, one of the

MODULAR BUILDING ASSESSMENT STRUCTURAL - S5 lower braces on the east side of the building was moved north two bays to accommodate a new roll up door (photograph 16/SS-8). This resulted in braced frames that are not continuous to the foundation. This condition is non-compliant with the Tier 1 vertical irregularities provision.

ASCE 41 allows for vertical irregularities provided that the load can adequately be transferred from frame to frame and to the foundation. This means that not only must there be elements in place to transfer seismic force—struts to transfer shear and columns to transfer the overturning forces—but these elements must also have the capacity to resist the seismic force.

These support elements (beams and columns) were analyzed using Tier 2 limit-state analysis. This analysis involved determining the expected strength of the MLFRS and using the corresponding seismic load to analyze the whole system. From this analysis, the support columns were deemed to be adequate, but the W12x26 beam that spans the 20-foot bay between the upper and lower frames was determined to be an inadequate strut. Because seismic force cannot be adequately transferred between frames, PSE recommends that either the strut be upgraded to a section that can adequately transfer the seismic force or that the upper frame is moved so that it shares the same bay with the lower frame.

C. CONSTRUCTION

Building Code

The building was originally constructed in 1979 under the 1979 Edition of the <u>Uniform Building Code</u> (UBC) by the International Conference of Building Officials. Original Engineer of Record (EOR) was Victor O. Gray & Company.

A mezzanine was added in 1982 under the 1979 Edition of the UBC. The mezzanine is located between grids A &G and 1 & 3.

It appears that only minor structural upgrades and repairs have been completed since the original construction. It appears that a lateral brace was moved from its original location on the east wall of the high bay building to make room for new roll up doors.

Original Design Loadings (per DES 79-244 sheet S-1)

Dead (typical)	as required
Dead (future mezzanine)	60 psf
Live (mezzanine mech.)	150 psf
Live (roof)	25 psf
Live (hung equipment)	5 psf
Live (RTU's)	as required
Live (future mezzanine)	100 psf
Wind (UBC)	25 mph zone
EQ (UBC)	zone III
Allowable Soil Bearing	4,000 psf

II. PROBLEMS TO BE CORRECTED AT THIS TIME

1. PUBLIC HAZARD

PROBLEM: Fall Restraint at the Low and High Roof

The existing parapet is not compliant with current code to prevent falls from the roof. Maintenance staff or contractors performing work are currently required to wear a harness regardless of where they are working on the roof. SOLUTION: Extend the parapet per sketch SSK-1, QUANTITY: Approximately 1,320 LF of extended parapet COST: \$322,529 PRIORITY LEVEL: 2

PROBLEM: Cooling Tower Fall Restraint

Temporary scaffolding is required when performing maintenance on the cooling tower.

SOLUTION: Continue to provide access with temporary scaffolding or replace cooling tower with unit that incorporates improved maintenance access

QUANTITY: 1

COST: N/A (cooling tower to be replaced per DES – see Mechanical section of report) **PRIORITY LEVEL:** 3

PROBLEM: Mezzanine Loading

The mezzanine between grids A & G and 1 & 3 is posted for 125 psf but is only adequate to support 100-psf.

SOLUTION: Evaluate the weight of the products being stored on the mezzanine and confirm that less the weight is less than 100-psf. If the product load exceeds this limit, the weight of the product stored on the mezzanine should be reduced. The mezzanine should also be posted for a 100-psf storage load limit.

QUANTITY: Two locations COST: \$1,200 PRIORITY LEVEL: 3

PROBLEM: Storage Rack Capacity

The storage racks may be overloaded depending on the weight of the products currently being stored. **SOLUTION**: Evaluate the weight of the products being stored on the racks and confirm that less than 2,640-lbs are stored on any individual shelf. If the product load exceeds this limit, the weight stored per shelf should be reduced or the anchorage upgraded. Assuming no anchorage upgrades are made the storage racks should be posted for a 2,640-lb or 85-psf per shelf weight limit.

QUANTITY: Two locations COST: \$1,200 PRIORITY LEVEL: 3

PROBLEM: Separation Between Adjacent Buildings

The as-built seismic joint located between grids G and H allows for only 2-inches of movement and is undersized for the anticipated movement demands.

SOLUTION: Replace the seismic joint between the two buildings with a joint that can accommodate the anticipated seismic loads. The replacement joint should allow for 6½-inches of movement. **QUANTITY:** 240 linear feet

COST: \$44,994 **PRIORITY LEVEL:** 2

PROBLEM: Soil Liquefaction

It is unknown if the soils present at the building site are susceptible to liquefaction. If liquefiable soils are present, future detailed retrofit design will require the consideration of the effects of liquefaction on the structure.

SOLUTION: Conduct a site specific geotechnical investigation based on the constructed soil profile. **QUANTITY**: n/a **COST**: \$20,000

PRIORITY LEVEL: 2

PROBLEM: Brace Connection Strength

The seismic braced frame connections are not adequate to transfer the anticipated seismic demand. **SOLUTION**: Retrofit the brace frame connections to increase their capacity. The connections may be strengthened by adding stiffener plates, anchor bolts, or welds, depending on the connection's specific configuration. A sample connection upgrade is shown in sketch SSK-2.

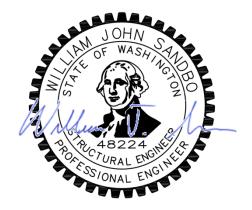
QUANTITY: 72 connections COST: \$283,589 PRIORITY LEVEL: 2

PROBLEM: Vertical Irregularity

A vertical irregularity exists where a brace was moved to allow for installation of a new roll-up door on the east wall of the high bay building.

SOLUTION: Upgrade the W12x26 strut to a section that can adequately transfer the seismic force or move the upper braces north so it shares the same bay as the lower frame. **QUANTITY:** 1 location

COST: \$23,284 PRIORITY LEVEL: 2


2. BUILDING MAINTENANCE

Not applicable.

3. CONSULTANT RECOMMENDATIONS

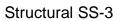
Not applicable.

I HEREBY CERTIFY THAT THIS DOCUMENT WAS PREPARED BY ME OR UNDER MY DIRECT PERSONAL SUPERVISION AND THAT I AM A DULY LICENSED ENGINEER IN THE STATE OF WASHINGTON.

Parapet From Roof (at roof "ridge") PHOTOGRAPH 1

Parapet Base From Interior (from Mezzanine) PHOTOGRAPH 2

MODULAR BUILDING ASSESSMENT


Parapet Base Detail (from roof access) PHOTOGRAPH 3

Parapet Cavity PHOTOGRAPH 4

MODULAR BUILDING ASSESSMENT

MODULAR BUILDING ASSESSMENT

Cooling Tower Scaffolding PHOTOGRAPH 6

Cooling Tower PHOTOGRAPH 5

Cooling Tower Support Pipe Connection to Joist Below <u>PHOTOGRAPH 7</u>

Cooling Tower Outrigger Detail PHOTOGRAPH 8

MODULAR BUILDING ASSESSMENT

Underside of Mezzanine PHOTOGRAPH 9

Mezzanine Framing PHOTOGRAPH 10

MODULAR BUILDING ASSESSMENT

Mezzanine Ships Ladder PHOTOGRAPH 11

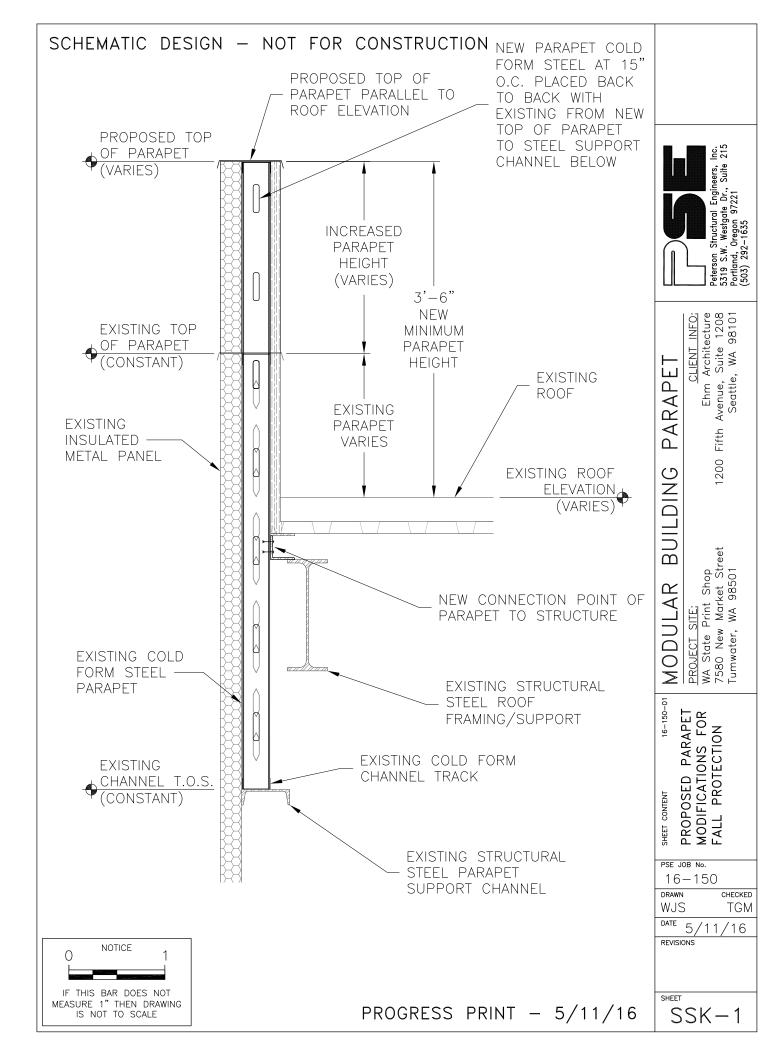
Mezzanine Ships Ladder Railing Detail PHOTOGRAPH 12

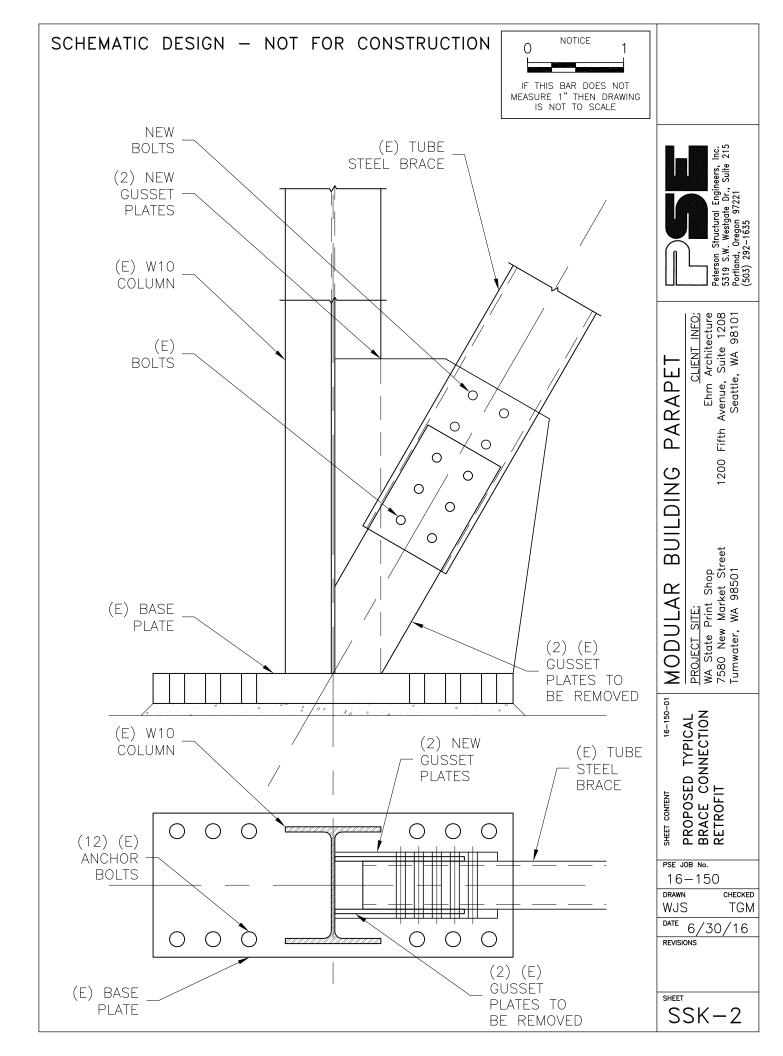
MODULAR BUILDING ASSESSMENT

Mezzanine Stair Railing PHOTOGRAPH 13

Storage Racks PHOTOGRAPH 14

MODULAR BUILDING ASSESSMENT




Typical Brace/Beam Connection PHOTOGRAPH 15

Offset Braces Resulting in Vertical Irregularity
PHOTOGRAPH 16

MODULAR BUILDING ASSESSMENT

Gn Electrical

5. ELECTRICAL

I. INTRODUCTION

A. Elcon Associates, Inc. personnel inspected electrical components of the Modular Building on April 8 and April 26, 2016. The Scope of Work included assessment of building power distribution system, interior lighting, and loading dock levelers. The Scope of Work also included a review of a 2012 ESCO Audit and update of associated costs.

B. GENERAL DESCRIPTION OF THE EXISTING ELECTRICAL SYSTEMS

The power distribution and interior lighting systems are mostly original, with a few minor upgrades and modifications apparent.

AGE: Built in 1980, the modular structure's electrical systems are approximately thirty-six years old.

CONDITION: The building electrical components are in good to fair condition, as further outlined herein.

ADEQUACY OF COMPONENTS: The building power distribution and lighting systems are adequate to their current use. There are no significant anticipated changes to the building that would exceed the system capacity.

REMAINING SERVICE LIFE: Through a program of preventive maintenance, the power distribution and lighting system should have a remaining service life of approximately twenty years.

BUILDING ELECTRICAL COMPONENTS Electrical Distribution

The existing electrical distribution system consists of an incoming 480/277volt, 1500kVA Utility transformer that supplies a 480/277volt, 2500amp (approximately 2000kVA rated) fused switchboard (photograph 01/EE-1) loaded to 500kVA (600amps) or one-third of the Utility transformer. The Main Switchboard feeds four (4) 800amp 480/277volt switchboards (photograph 02/EE-1). A recently installed 250kW generator located outside next to the Utility transformer provides backup power for lighting, and payroll and check printers.

The electrical serviceable life is dependent on how hot the panels and circuit breakers have been due to electrical loading, also on the number of operations (on/off cycles) the circuit breaker/switch have been subjected to. Another item in determining serviceable life is the environment; is the equipment installed outside, inside, in dirty or clean location, and if there is condensing moisture, based on the ambient temperate.

The exposure to excessive heat shortens the life span of electrical equipment, unless the equipment has been too hot to touch, aging due to high temperatures is not an issue.

Another aspect of equipment aging is the number of operations (on/off cycles) the circuit breaker, fused switch, contactor, etc. has been subject to. A typical UL listed circuit breaker is tested for approximately 10,000 operations (27 years if cycled once per day, 365 days per year, 7 days a week); 6,000 operations at fully rated current and voltage, and additional 4,000 operations without current. A contactor or relay is typically rated for 100,000 electrical operations. Contactors are used in motor controllers and some lighting control panels.

The last set of items is environment and maintenance in determining aging factors for equipment. The building is clean and heating and ventilation keeps moisture out of equipment limiting corrosion. The cleanliness of the building also keeps contaminates out of equipment preventing arcing and tracking in the electrical equipment causing equipment failures.

Lighting

The lighting system is functioning normally, and there are no apparent immediate wholesale repair needs. Lighting levels are below recommended levels at printing stations. Light fixtures are mature, and appear to be at the point where components are reaching end of life and needing frequent replacement. See Audit discussion below.

> MODULAR BUILDING ASSESSMENT ELECTRICAL - E1

Dock Levelers

The load dock levelers (photograph 03/EE-2) are powered at 480volts 3-phase power. The dock leveler controllers (photograph 04/EE-2) are located inside the building next to each respective rollup door. Electrically the dock levelers are functional except for the North load dock, where power is disconnected, and it was not possible to verify if the dock leveler was functional. See related report by Industrial Hydraulics in Appendix B.

C. AUDIT

Review

The University Mechanical 11/27/2012 Investment Grade Audit for the State Modular Building Energy Upgrades' sole electrical consideration was the building interior lighting system. It discussed only possible energy reduction measures. It did not include any review of lighting levels, glare, color rendering, or other light quality or maintainability considerations. The audit proposed lighting retrofits or replacements for 1,199 fixtures out of 1,254 fixtures. The audit proposed adding 7 new occupancy controls. The audit identified \$4,383 design cost, \$87,650 construction cost, \$13,500 utility energy rebate, and a \$6,543 annual savings in energy use and operational savings. No defect was found in our review of the Audit costs identified, for the time they were issued.

QUANTITY: 1,199 replaced or retrofitted fixtures,

COSTS: 7 occupancy sensors \$4,383 design cost \$87,650 construction cost (\$13,500) utility energy rebate (\$6,543) annual savings

Update

The audit recommendations were not examined exhaustively in the field. It appears some the recommendations have already been implemented such as replacement of mercury-vapor lighting in lobby areas with compact fluorescent. The U.S. Inflation Rate has increased by 4.2% between 2012 and 2016. The 2012 Washington State Energy Code went into effect in July 2013, and its requirements were not reflected in the Audit costs. The 2015 Washington State Energy Code is scheduled to be in effect as of July 1, 2016, and is assumed applicable to any lighting work proposed. The Energy Code updates compel implementation of more lighting controls and attendant design than were included in the Audit. The 2016 update decreases the allowed energy use for lighting by approximately 20%, making LED fixtures the only viable solution for some applications. The Energy Code requirements dilute the potential utility rebate, since the utility will only pay for energy efficiency measures above and beyond what the Energy Code compels.

QUANTITY: 1,199 replaced or retrofitted fixtures,

COSTS: Whole building lighting control system per Code \$32,000 design cost \$212,000 construction cost (\$7,000) utility energy rebate (\$7,500) annual savings The approach taken in the Audit was directed purely at lighting changes to achieve energy savings that resulted in a 9.8 year simple payback. An alternative lighting design approach is one driven by operational needs - insuring appropriate lighting levels and quality are provided for the tasks performed. This design approach includes lighting measurements and calculations. Minimizing the energy use and construction cost is a secondary consideration. Cost estimating for this traditional design approach typically includes capital costs, and life-cycle costs when identified in the project scope. The lighting industry is shifting more and more to LED fixtures. Life-cycle cost evaluation typically finds that LED fixtures are a more appropriate solution in occupied facilities (~ 40 hrs/week). Fluorescent fixtures still are utilized, but are pretty much relegated to seldom used spaces such as storage closets where there isn't enough usage of the lighting to achieve payback of the additional cost for an LED solution.

D. CONSTRUCTION

Existing Drawings

Drawings were obtained from the Owner for most of the building elements. However, some minor building components do not appear on the available drawings.

Changes Required by Current Electrical Codes

Our inspection supports an assessment that the lighting and power distribution systems are be compliant with the Code in effect at the time of installation. As such, these systems are 'grand-fathered' and are not required to be updated to meet current Code requirements. The factors which would trigger Code related updates are changes in use or occupancy of the building, and modification of the lighting or power distribution systems. The extent of Code required upgrades would depend on the good judgment of the engineer, the electrician, and the electrical inspector.

Any major remodel or re-lamping and re-ballasting will trigger current Washington State Energy Code and the modified lighting system would need to be brought into compliance with current energy limits and control requirements for lighting.

E. RECOMMENDATIONS

Preventive Maintenance

Perform regular maintenance of electrical equipment in accordance with NEMA, NFPA 70B, or other industry standard, to include annual infrared scanning (imaging) be done to locate any hot spots caused by loose connections, overloads, or dirty contacts in circuit breakers or fused switches. Regular maintenance of equipment ensures reliable facility operation, protects personnel and equipment from catastrophic failure of deteriorated equipment, and eliminates owner liability for preventable accidents.

Cost: \$ 2,400/Year Priority Level: 3

Power Distribution

Wholesale replacement of the building power distribution system is not warranted at this time. The system is expected to provide relatively trouble-free operation for at least the next five years with regular maintenance. As the system exceeds its design life, component repair and replacement needs will become more common. At some point the cost/benefit of continuing with spot repairs and declining reliability versus system replacement will motivate a building-wide refurbishment of the electrical distribution system.

Cost: \$ 572,880 **Priority Level:** 5

Lighting

The recommended approach, depends on the objective. Three different recommendations are provided below to suit different objectives.

MODULAR BUILDING ASSESSMENT ELECTRICAL - E3 1 - Continue to maintain the existing lighting system on an as-needed basis. This is the least capital cost solution, and is appropriate for a maintenance-only budget, with a financial outlook of 10 years or less. Costs will be similar to those currently experienced in the facility.

OPTION 1 COST: \$54,000 annual maintenance (parts and labor)

2 – Perform an ESCO type lighting upgrade focused on retrofit or replacement of existing fixtures with lower wattage alternatives with a reasonable cost/benefit payback period. This would be an updated version of the 2012 Audit approach. Due to Code compelled increases in the controls and design costs, simple payback for this alternative is estimated at 12 years. Costs are noted in the Audit – Update section above.

OPTION 2 COST: \$229,500 net, see Audit Update for details

3 – Perform a complete building lighting system replacement with full design. This is a best management approach for a facility whose operation is expected to continue for the next 20 years or more. It ensures appropriate lighting for all the building operations, and replaces the existing lighting system, which is at the end of its design life. This is a capital equipment/building renovation project that it is not feasible under a maintenance budget that has limited dollars and many building systems to maintain.

OPTION 3 COST: \$344,000

I HEREBY CERTIFY THAT THIS DOCUMENT WAS PREPARED BY ME PERSONALLY, AND THAT I AM A DULY REGISTERED ENGINEER IN THE STATE OF WASHINGTON.


Elect Rm 704 - Main Switchboard 2500Amps PHOTOGRAPH 01

<u>Elect Rm 704 – Switchboard 'HA' 800Amps</u> <u>PHOTOGRAPH 02</u>

MODULAR BUILDING ASSESSMENT

Electrical EE-1

Load Dock Leveler PHOTOGRAPH 03

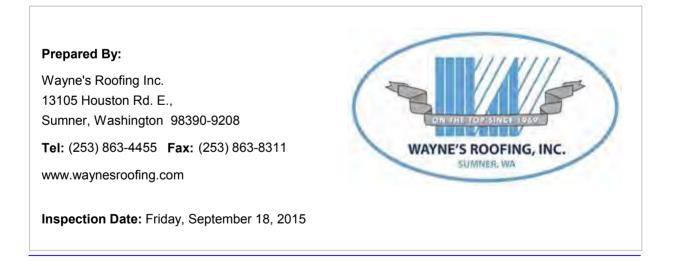
Load Dock Leveler Controller PHOTOGRAPH 04

MODULAR BUILDING ASSESSMENT

Electrical EE-2

O Cost Estimate

Modular Building Building	
Assessment Cost Matrix	

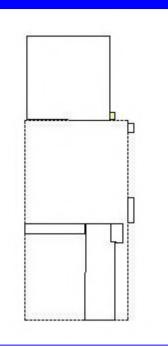

Project No. 2016-286

			PRIORITY LEVEL	ASSOCIAT	
	1 - Critical Life Safety Issue	2 - Critical Issue	3 - Significant Issue	4 - Moderate Issue	5 - Minor Maintenance
2 Architectural					1
Repair Damaged Insulated Panels		\$8,290			
Paint Insulated Panels			\$150,647		
Replace Failing Panel Seals		\$46,665			
Repair Dock Levelers	\$6,760				
Replace Overhead Rolling Doors		\$65,435			
Replace Inoperable Dock Levelers		\$11,194			
Remediate Parking Lot Drainage					\$580,849
Replace Aging Roof System			\$1,961,441		
Modify Ramps at Entry	\$2,518				
Replace Guardrail at Entry	\$11,897				
Modify Path of Travel at Entry	\$793				
Replace Noncompliant Ship's Ladders	\$18,507				
3 Mechanical					
Increase Minimum Outside Air Settings	\$6,750				
Replace AHU / Ductwork			\$1,000,927		
Backflow Prevention at Humidification System		\$4,500			
Wind/Rain Protection at AHU	\$11,250				
Check Controls Programming for False Alarms		\$7,500			
Replace Cooling Tower/Piping/Fittings/Seals	\$841,896				
Replace Pneumatic Actuators with Electric		\$27,000			
Assess Chiller Capacitors		42,,000	\$7,500		
Replace Ductwork in Low Bay			\$411,262		
Adjust Controls Programming			\$30,000		
Install Cleanouts on Main Sewer Lines/Laterals			400,000	\$2,400	
Insulate All Roof Drains				\$5,625	
Reline Waste Piping to Eliminate Infiltrations				\$33,750	
Re-grade Twenty Foot Section of piping within the				400,700	
Low Bay section of the building				\$26,400	
Hydro jet the waste piping				\$69,300	
Replace hydronic heating boilers (2 boilers)		\$212,626			
4 Structural					
Parapet Extension		\$322,529			
Cooling Tower Fall Restraint			\$0		
Mezzanine Load Posting			\$1,200		
Storage Rack Load Posting			\$1,200		
Replace Seismic Joint		\$44,994			
Obtain Geotechnical Report		\$20,000			
Retrofit Braced Frames		\$283,589			
Address Vertical Irregularity of Brace		\$23,284			
5 Electrical					
Continue to Maintain Existing Lighting				\$54,000	
Esco Lighting Upgrade			\$229,500		
Complete Lighting Upgrade			\$344,000		
Preventive Maintenance			\$2400 per year		
Replace Power Distribution Systems					\$572,880
					÷
TOTAL	\$900,371	\$1,077,606	\$4,137,677	\$191,475	\$1,153,729
Qualifications on Pricing	Pricing includes Construction	on Cosis only, and excludes a	II Soft Costs (Design, Sales Tax, Furr	nishings, impact reesj.	
	Pricing Include applicable General Conditions, Supervision, Fee, Escalation in all all items				
	Contractor Markup/FEE/General Conditions change per item based on whether project is handled by prime subcontractor or managed by General Contractor				

Z Appendix

Department of Enterprise Services, Tumwater, WA

Roof Condition Summary


Work Order #:	35198

Inspection Date: 10:30:00 AM

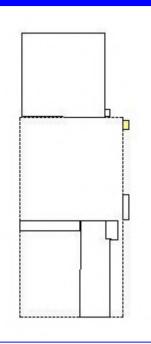
Roor Condition Summary				
Building	Roof	SF	Roof System	Condition Rating
Imported Roofs	A -	170	White - PVC	Fair
Imported Roofs	В	304	White - PVC	Fair
Imported Roofs	С	885	White - PVC	Fair
Imported Roofs	D	1,202	White - PVC	Fair
Imported Roofs	E	3,147	Standing Seam - Metal	Fair
Imported Roofs	Pov	57,840	White - PVC	Fair
Imported Roofs	Bay Bay	38,104	White -PVC	Fair

Department of Enterprise Services, Tumwater, WA

Roof: A -

Inspection Date: 10:30:00 AM

Building: Imported Roofs


Roof System:	White - PVC
Install Date:	1998 - Estimated
Roof Deck:	Metal
Roof SF:	170
Elevation:	15'
Interior Sensitivity:	0 - None
Warranty:	

Condition Assessment: 50 - Fair

Roofs in fair condition. Minor debris were noted at this time. No visual problems noted during our inspection.

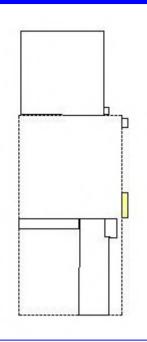
Department of Enterprise Services, Tumwater, WA

Roof: B

Condition Assessment: 50 - Fair

Roofs in fair condition. No visual problems noted during our inspection.

Work Order #: 35198


Inspection Date:

10:30:00 AM

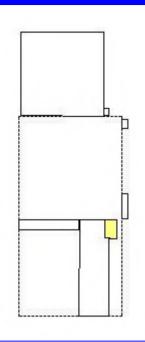
Department of Enterprise Services, Tumwater, WA

Roof: C

Condition Assessment: 50 - Fair

Roofs in fair condition. No visual problems noted during our inspection.

Work Order #: 35198


Inspection Date:

10:30:00 AM Building: Imported Roofs

Department of Enterprise Services, Tumwater, WA

Roof: D

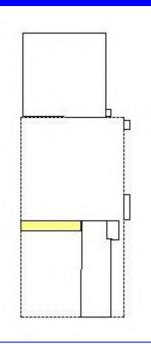
Condition Assessment: 50 - Fair

Roofs in fair condition. No visual problems noted during our inspection.

Work	Order #:	35
Work	Order #:	35

5198 Inspection Date:

10:30:00 AM


Building: Imported Roofs

Roof System:	White - PVC
Install Date:	1998 - Estimated
Roof Deck:	Metal
Roof SF:	1,202
Elevation:	18'
Interior Sensitivity:	0 - None
Warranty:	

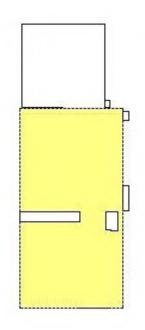
Department of Enterprise Services, Tumwater, WA

Roof: E

Work Order #: 35198

Inspection Date: 10:30:00 AM

Building: Imported Roofs


Roof System:	Standing Seam - Metal
Install Date:	- Unknown
Roof Deck:	Plywood
Roof SF:	3,147
Elevation:	30'
Interior Sensitivity:	2 - Medium
Warranty:	

Condition Assessment: 50 - Fair

Roofs in fair condition. No visual problems noted during our inspection.

Department of Enterprise Services, Tumwater, WA

Roof: Modular - High Bay

Condition Assessment: 50 - Fair Roofs in fair condition at this time.

001	Condition:	004- Deb	oris on root		
004	Severity:	2 - Secor	ndary Repa	air	
	Qty:	SF: 1	LF: 4	EA: 1	

Minor debris noted around the drainage areas. Drainage areas should always be keeped clear for proper drainage of the roof.

Condition:	EG - 20	4 - Conder	nsation Lines	
Severity:	2 - Seco	ondary Rep	pair	
Qty:	SF: 1	LF: 4	EA: 1	

The condensation lines are lying directly on the roof surface. This detail could cause the PVC line to rub through the field membrane with back and forth movement. Recommend lifting and supporting the PVC lines up off of the roof surface. (2 locations - approximately 150 LF each)

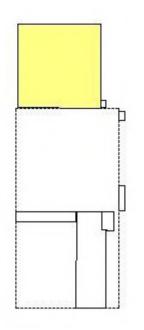
Roof System:	White - PVC
Install Date:	1998 - Estimated
Roof Deck:	Unknown
Roof SF:	57,840
Elevation:	32'
Interior Sensitivity:	2 - Medium
Warranty:	

10/2/2015 4:04:25 PM

Work Order #: 35198

Inspection Date:

10:30:00 AM Building: Imported Roofs


Inspection Report Department of Enterprise Services, Tumwater, WA	Work Order #: 35198 Inspection Date:
	10:30:00 AM Condition: EG-224 - Improper Installation Severity: 2 - Secondary Repair Qty: SF: 1 LF: 4 EA: 1 access stairs installed on this roof section should have a protection installed to protect the field membrane from wear. (3'x5' walkpad)
	Condition:F-112 Field Membrane- temporary repairSeverity:2 - Secondary RepairQty:SF: 1LF: 4EA: 1ch currently installed is designed to be temporary. A permanent repair is ended as soon as possible.
	Condition: PP-152 Penetration - Sealant failure Severity: 2 - Secondary Repair Qty: SF: 1 LF: 4 EA: 1 ur inspection we noted the caulking at this penetration is failing and be resealled.
Sealant :	Condition:PP-152 Pitch Pan- Sealant failureSeverity:2 - Secondary RepairQty:SF: 1LF: 4EA: 1should be removed and replaced to prevent water entry.

Inspection Report Department of Enterprise Services, Tumwa	ater, WA	Work Order #: 35198 Inspection Date: 10:30:00 AM
	Condition: Severity: Qty:	006- Ponding 1 - Monitor SF: 2 LF: 8 EA: 2
	the roof membrane is	to the roof, and can cause many undesirable problems. If damaged in a ponded area, the water may drain into the ntially into the building. We will continue to monitor these problems.

-

Department of Enterprise Services, Tumwater, WA

Roof: Modular - Low Bay

Condition Assessment: 50 - Fair Roofs in fair condition.

		F-100 Field Membrane- deteriorated 3 - Immediate Action		
2-100	Severity:			
	Qty:			
The reaf membrane is deteriorated and should be replaced to avoid further				

The roof membrane is deteriorated and should be replaced to avoid further degradation and the potential for leaks. Approximately a 4'x8' section.

1004	Condition:	D-206 Drain- vegetation build up		
D-206	Severity:	2 - Secor	ndary Repa	air
	Qty:	SF: 1	LF: 4	EA: 1

Minor debris noted around the drainage areas. Drainage areas should always be keeped clear for proper drainage of the roof.

10:30:00 AM

Roof System:	White -PVC
Install Date:	1998 - Estimated
Roof Deck:	Unknown
Roof SF:	38,104
Elevation:	25'
Interior Sensitivity:	2 - Medium
Warranty:	

Work Order #: 35198

Inspection Date:

Inspection Report Department of Enterprise Services, Tumwater, WA		Work Order #: Inspection Date	35198 :: <u>10:30:00 AM</u>
Image: Contract of the second seco	Condition: Severity: Qty: ne is stained f	026 - Staining 1 - Monitor SF: 2 LF: 8 EA from natural weathering.	A: 2
			A: 3 rane flashings appear to have been

AberdeenChehalisTumwater(360) 533-7070(360) 748-7878(360) 956-7070

Ehm Architecture / Washington State Department of Enterprise Services

Assessment and recommendations for dock leveler hydraulic systems at Department of Printing and Imaging

To: Randal Ehm

From: Brady Sweeney

Phone: Office 206-763-1481 Ext 306 Cell 206-719-0771

Email: randal@ehmarch.com

Date: 5-10-16

Leveler #1: This system had an electrical problem when we were on site so we were unable to run it to get a look at the system under the platform. From the looks of the platform and the concrete, this system is an original and has not been updated. We are unable to provide an assessment at this time.

Leveler #2: This system also seems to be original. When we ran the system the pump was cavitating at the end of the stroke. We observed oil on the exterior of the tube for the main lift cylinder which indicates a leak that has diminished the oil level in the reservoir, causing the cavitation. In order to remedy this leak the main cylinder would need to be removed and brought into the shop to be rebuilt. The rebuild of the cylinder can vary greatly from a basic hone, polish and repack to a more extensive rebuild including machining new parts as needed. This system also lacks a brace to hold the platform up during maintenance.

Estimate For Repair \$3200.00 Includes

Remove, basic rebuild, and reinstall cylinder

Fabricating support brace

Basic cleaning and inspection, and top-off hydraulic fluid

*Any repairs or machining of parts for the main cylinder beyond a basic reseal would have to be quoted upon tear down. Any worn parts found upon further inspection would be quoted at that time (including bad hoses and fittings)

Leveler #3: This system looks newer than the first two and looks to be in good working order upon the initial inspection.

Estimate For Repair \$400.00 Includes

Basic cleaning and inspection

*Any worn parts found upon further inspection would be quoted at that time (including bad hoses and fittings).

Leveler #4: This system also looks newer than the first two. Upon initial inspection there did not seem to be any apparent leaks. The main cylinder lifts the platform fine but the small cylinder to lift the lip does not extend. The lip cylinder is controlled by a sequence valve that is supposed to open when the main cylinder reaches the end of its stroke and the set pressure is reached. The lack of this function working could be caused by something as simple as the pressure setting being wrong on the sequence valve or by a bad sequence cartridge. We would need to trouble shoot the system further to find the cause of the problem.

Estimate For Repair \$800.00 Includes

Basic cleaning and inspection

Trouble shoot issue with lip cylinder and adjust sequence valve

*If a bad sequence value is found upon trouble shooting new parts would be quoted at that time. Any worn parts found upon further inspection would be quoted at that time (including bad hoses and fittings).

<u>Comments</u>: For the purpose of numbering, leveler #1 is the northernmost and #4 is the southernmost. Leveler #2 is the only one being used at this time so it should be the highest priority for repair.

As stated above these are estimates and only include the scope of work laid out. Any further repairs would be quoted upon further inspection.

$$\frac{\text{Reachins on the building by the cooling tower}}{I / Loads on the cooling tower:}$$

$$I. Dead load:$$
To tal verges of the structure: $D = 8,000$ lbs
$$2. \frac{\text{Sismic load: Chapter 43 Asceff-10}}{\text{Importance factor: } I_p = 4.0}$$

$$Amplification factor: 0_p = 2.5$$
Response mod factor: $R_p = 3.0$

$$\frac{Z}{R} = 4$$

$$S_{DS} = 0.869$$

$$W_p = -8,000 \text{ fbs}$$

$$= 5 F_p = \frac{0.4 a_p S_{DS} W_p}{(\frac{R_r}{T_p})} (A + 2\frac{z}{R_r})$$

$$= \frac{0.4 \cdot 2.5 \cdot 0.869 \cdot 8,000}{3.0} (A + 2) = \frac{6952 \text{ fbs}}{5.02}$$

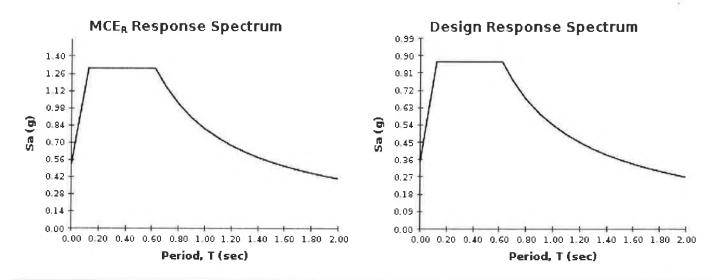
$$F_{pome} = 4.6 \text{ Sas } I_p W_p = 4.6 \cdot 0.869 \cdot 4.0 \cdot 8,000 = 41.423 \cdot 2 \text{ fbs}}$$

$$F_{pome} = 0.3 \text{ Sas } I_p W_p = 0.3 \cdot 8.869 \cdot 4.0 \cdot 8,000 = 2.085 \cdot 6 \text{ fbs}}$$

$$Vartical component : F_V = \pm 0.2 \text{ Sas } W_p = 1.430.4 \text{ fbs}}$$

USGS Design Maps Summary Report

User-Specified Input


Report Title	Modular Building Assessment Project
	Thu April 28, 2016 17:42:02 UTC
Building Code Reference Document	2012 International Building Code
	(which utilizes USGS hazard data available in 2008)
Site Coordinates	46.97832°N, 122.9131°W
Site Soil Classification	Site Class D - "Stiff Soil"
Risk Category	I/II/III
and the second state and the second state of t	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

USGS-Provided Output

S _s =	1.303 g	S _{MS} =	1.303 g	S _{DS} =	0.869 g
S ₁ =	0.540 g	S _{м1} =	0.809 g	S _{D1} =	0.540 g

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

http://ehp1-earthquake.cr.usgs.gov/designmaps/us/summary.php?template=minimal&latitude=46.97831978354993&longitude=-122.91309930342481&siteclass=... 1/1

3. Wind load: Chapter 25 Section 20.5 ASCE 7-10
Rish Calegory: II (of the Building)
=> Vult = 110 mph
Kd = 0.85
Exposure Calegory C

$$K_{2t} = 1.0$$

 $G = 0.85$
 $K_{2} = 0.96 (k:275\beta)$
 $G C_{r} = 1.9$
=> Wind pressure on the cooling lower:
horizontal: $p_{R} = q_{R} (GC_{r}) = \frac{48}{95f}$
 $up lift : p_{v_{L}} = q_{R} (GC_{r}) = \frac{48}{95f}$
 $A_{f} n-s = (\frac{140^{"} \times 86^{"}}{12^{2}}) = 83.6 ft^{2}$
 $A_{f} e-w = (\frac{140^{"} \times 108^{"}}{12^{2}}) = 64.5 ft^{2}$
 $A_{r} = \frac{(86^{"} \times 108^{"})}{12^{2}} = 64.5 ft^{2}$
=> F_{R, n-s} = 48.83.6 = 4043 (lbs)
F_{VL} = 48.64.5 = 30.96 (lb)

	1.00	
	-	
	100 C	
Peterson Structural Engir	neers, Inc.	www.psengineers.com

project	date		
designer	sheet	of	

4/28/2016

Search Results for Map

ASICE 7 Windspead

ASICE 7 Guturnd

Related Resource

Sers About ATC

Search Results

Query Date: Thu Apr 28 2016 Latitude: 46.9791 Longitude: -122.9125

ASCE 7-10 Windspeeds (3-sec peak gust in mph*):

Risk Category I: 100 Risk Category II: 110 Risk Category III-IV: 115 MRI** 10-Year: 72 MRI** 25-Year: 79 MRI** 50-Year: 85 MRI** 100-Year: 91

ASCE 7-05 Windspeed: 85 (3-sec peak gust in mph) ASCE 7-93 Windspeed: 75 (fastest mile in mph)

*Miles per hour **Mean Recurrence Interval

Users should consult with local building officials to determine if there are community-specific wind speed requirements that govern.

WINDSPEED WEBSITE DISCLAIMER

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the windspeed report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the windspeed report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the windspeed load report.

Sponsored by the ATC Endowment Fund • Applied Technology Council • 201 Redwood Shores Parkway, Suite 240 • Redwood City, California 94065 • (650) 595-1542

I/ Structural Analysis:
Load Combinations: 1. 1.40
2. (1.2 + 0.2 Sps) D + E
3. (0.9 - 0.2 Sps) D + E
4. 0.90 + W
Vertical load analysis:
Based on the configuration of the supporting structure for
the cooling tower, all the vertical load will be resisted
by the round pipes @ the 4 corners.
Assume a vertical force Packing on the structure, @ the
base of each round pipe, the reaction is $R = \frac{P}{4}$
Latrial load analysis:
Based on the configuration of the supporting structure for
the cooling tower, when a seismic force is applied to
the town, the whole structure will rotate about one
of the steel pipe. Assume a lateral form Vacting @
I the centroid of the cooling lower.
the shear force on each steel pipe
tension compression Tensile force @ base of the pipe =
tension $\ell = \ell$ Compressive force ℓ base of the trass sp = $K = \frac{\sqrt{2}}{2} \frac{d}{e}$
project date
Peterson Structural Engineers, Inc. www.psengineers.com

Peterson Structural Engineers, Inc. www.psengineers.com

$$\frac{Lawal \ load analysis ((ont.))}{8} \cdot For \ V \ in \ N - S \ direction:
l = 244" d = 433"
=> R = $\frac{439}{244} \frac{V}{2} = 0.285 V$
• For V in E - W direction:
l = $482"$ d = $439"$
=> R = $\frac{439}{482} \frac{V}{2} = 0.382 V \ control$
* $\frac{Combination \ no \ A : \ A4D}{182} \frac{V}{2} = 0.382 V \ control$
* $\frac{Combination \ no \ A : \ A4D}{182} \frac{V}{2} = 0.382 V \ control$
=> $P = A.4 \cdot 8,000 = M/200 \cdot lbs$
 $V = 0$
=> $Lomprovision force C the base of the pipe = $\frac{M,200}{4} = \frac{2,700 \ lbs}{16}$
shear force $U = 0$
* $\frac{Combination \ no \ 2: (A 2 + 0.25ps) 0 + E}{16}$
=> $P = (A 2 + 0.2 \cdot 0.869) \cdot 8,000 = A0,990 \ lbs$
 $V = F_{P} = 6,952 \ lbs$
=> $Comprovision force C the base of the truns supports
 $C = 0.382 V = 0.382 \cdot 6,952 = \frac{2}{2},656 \ (lbs)$
Tension force C the base of the pipe:
 $T = -\frac{L}{4} + 0.382 V = -\frac{40,990}{4} + 0.382 \cdot 6,952 = -\frac{92}{2} \ (lbs)}{100 \ mouplet}$$$$$

designer

Peterson Structural Engineers, Inc. www.psengineers.com

sheet

of

$$\frac{(\text{ornbination no } 2: (4.2 + 0.2 \text{ Sps}) D + -2.0 \text{ Qe}}{\text{Shean force } Q \text{ the base of the pipe:} \\ S = \frac{V}{4} = \frac{6,952}{4} = 4,738 (15)$$

* (ornbination no 3: (0.9 - 0.2 Sos) D + -2.0 Qe:
=> P = (0.9 - 0.2.0.869) · 8,000 = 5766.4 lbs
V = Fp = 6,952 lbs
=> (compromise force Q the base of the trues supports:
C = 0.382 · V = 2,556 (lbs)
Tension force Q the lase of the pipe.
T = $-\frac{P}{4}$ + 0.382 V = $-\frac{5766.4}{4}$ + 0.382 · 6952 = 12.14(lbs)
shean force Q the lase of the pipe.
S = $\frac{V}{4}$ = $\frac{1,738(lbs)}{4}$
* (ornbination no. 4: 0.90 + 10W.
P = 0.3.8,000 - 3096 = 4104(lbs)
v = 5040(lbs)
=> (ompression force Q the lase of the trues supports:
C = 0.382 · V = 0.382 · 5040 = 1925,3(lbc)
Tension force Q the base of the pipe.
T = $-\frac{P}{4}$ + 0.382 V = $-\frac{4104}{4}$ + 0.382 · 5,040 = 899.3(lbs)
Shean force Q the base of the pipe.
T = $\frac{P}{4}$ + 0.382 V = $-\frac{4104}{4}$ + 0.382 · 5,040 = 899.3(lbs)
Shean force Q the base of the pipe.
T = $\frac{P}{4}$ + 0.382 V = $-\frac{4104}{4}$ + 0.382 · 5,040 = 899.3(lbs)

Peterson Structural Engineers, Inc. www.psengineers.com

designer	sheet	of	

Summary:

· Stel pipes:

Max shear: $V_{max} = 1,738$ lbs (EQ controls) Mox tension: $T_{max} = 1,214$ lbs (EQ controls) Max compression: $C_{max} = 2,800$ fbs (DL)

· Supports of the truss :

Max compression: (max = 2,656 lbs (EQ controls)

project	

date

sheet

designer

Mezzanine Capacity evaluation

To evaluate the capacity of the mezzanine, we will evaluate each structural member one by one, and which one has the lowest capacity for Live load will be the controlling capacity of the whole structure:

1. Concrete on Metal deck.

2. Open web steel joist.

3. Stel beam (interior) W 24 × 84

4. Column.

5. Steel beam (Edge) W 21×50

Peterson Structural Engineers, Inc. www.psengineers.com

project

date

designer

of

1. Concrete on metal deck:

2 2" normal weight concrete topping w/ W2.9XW.2.9-6×6 W.W.F Reinf. over type "13-30" 11" deep 18 gauge metal deck. spanning 4'-0" Concrete weight = 36.25 psf } total dech weight = 39 psf Deck weight = 2.76 psf From ASCSD page 113: Maximum Superimpose load for this deck is: 1.6 Lallowed = 1358 psf =) Lallowed = 849 psf So, the capacity of the deck is <u>849psf</u> date project

Peterson Structural Engineers, Inc. www.psengineers.com

designer

sheet

of

TABLE OF CONTENTS

BH-36 Composite Deck 4.4

	STEEL DECK						`				4" 1	otal	Slat	Der	oth		
	and the second second	- and in case					N	orm	al W	'eiah		oncre					
	1.1.5	141115	-					•		-		lume (-	-	-		
	50500 40	61	11						U	JICIEL		ume u	.931	yu-710	UIL-		
			1 1 1	ų.													
0				N	_	m Unsl	nored S									_	
Ga 2		Double 6' - 8"			ple					Single 8' - 6"		Double 10' - 1"		Triple 10' - 8"			
		0-0 8'-2"		8' -				16		o - o 9' - 2"			- 1 - 4"		10 -	-	
			5'-6"	6'-0"		71.01	71.01			_	01.08	_		441.08			
GA	Vertical Load Span (in)	5'-0"	5-6		6'-6"	7'-0"	7'-6" rimpos	"0-'8	8'-6"	9'-0"	9'-6"	10'-0"	10'-6"	11'-0"	11'-6"	12'-0"	
	ASD, W/Ω	663	543	451	380	- Supe 324	279	241	211	185	163	144	128	114	102	91	
	LRFD, ØW	1060	868	722	609	518	446	386	337	295	261	231	205	183	163	146	
	L/360	1	363			-	-	-			-						
	LRFD - Diaphragm Shear, ϕS_n (plf / ft) 36/4 Attachment Pattern																
22	Arc Spot Weld 1/2" Effective Dia	3124	3061	3008	2979	2939	2905	2875	2848	2825	2815	2795	2777	2761	2747	2733	
	PAF Base Steel ≥ .25"	2809	2774	2745	2736	2714	2695	2678	2663	2649	2649	2637	2627	2618	2609	2602	
	PAF Base Steel ≥ 0.125"	2784		2724	2717	2696	2678	2662	- · · ·	2636	2636	2625	2615	2607	2599		
	#12 Screw Base Steel ≥ .0385"	2762	2731	2705	2700	2680	2663	2648	2635	2623	2624	2614	2605	2596	2589		
	Concrete + Deck				-	= 25.4	in⁴/ft			MnJΩ=	27.1	kip-in/ft		$V_n/\Omega =$		kip/ft	
	(I _{cr} +I _u)/2	= 39.42	In*/It	_	_u =		in⁴/ft		_	фМ=	41.5	kip-in/ft	_	$\phi V_n =$	3.40	kip/ft	
	Vertical Load Span (in)	5'-0"	5'-6"	6'-0"	6'-6"	7'-0"	7'-6"	8'-0"	8'-6"	9'-0"	9'-6"	10'-0"	10'-6"	11'-0"	11'-6"	12'-0"	
ŀ		700	010				rimpose			-	405	470	1==	400	40.4	440	
	ASD, W/Ω	780	640	533	450	384	331	287	251	221	195	173	155	138	124	112	
	LRFD, φW L/360	1248	1024	853	720	614	529	459	402	353	312	277	247	221	198	179	
H	L/300	-	_RFD - D)ianhra	am She	ar dS	- /nlf/ft)	36/4	Attach	nent Pat	tern				*	<u>.</u>	
20	Arc Spot Weld 1/2" Effective Dia	3273	3195	3130	3099	3050	3008	2971	2939	2910	2900	2876	2854	2834	2816	2799	
	PAF Base Steel ≥ .25"	2888	2845	2810	2803	2776	2752	2731	2712	2696	2698	2684	2671	2659	2649	2639	
	PAF Base Steel ≥ 0.125"	2859	2819	2785	2781	2755	2732	2713	2695	2680	2682	2669	2657	2646	2636	2627	
	#12 Screw Base Steel ≥ .0385"	2834	2796	2765	2762	2737	2716	2697	2681	2666	2669	2657	2645	2635	2625	2617	
	Concrete + Deck		psf			28.8	in¹/ft			$M_{no}/\Omega =$	31.7	kip-in/ft		$V_n/\Omega =$		kip/ft	
	(l _{cr} +l _u)/2	= 42	in⁴/ft		₀ =	55,2			_	фМ=		kip-in/ft	_	$\phi V_n =$		kip/ft	
L	Vertical Load Span (in)	5'-0"	5'-6"	6'-0"	6'-6"	7'-0"	7'-6"	8'-0"	8'-6"	9'-0"	9'-6"	10'-0"	10'-6"	11'-0"	11'-6"	12'-0"	
							rimpose										
	ASD, W/Ω LRFD, φW	906 1358	814	680 1087	575 919	491 786	424	369	324	286	253	217	187	163	143	126	
	L/360	-1330	1235	1007	919	- 100	679 -	591 -	518 -	457	405 253	361 217	323 187	290 163	262 143	237 126	
	2/000		.RFD - D)iaphrae						nent Pat		217	107	100	145	120	
18	Arc Spot Weld 1/2" Effective Dia	3581	3474	3385	3352	3284	3226	3174	3129	3089	3082	3048	3017	2990	2964	2941	
	PAF Base Steel ≥ .25"	3053	2995	2945	2946	2907	2874	2845	2819	2796	2804	2784	2766	2750	2735	2721	
	PAF Base Steel ≥ 0.125"	3015	2960	2913	2916	2880	2848	2821	2796	2774	2784	2765	2748	2732	2718	2705	
	#12 Screw Base Steel ≥ .0385"	2988	2935	2891	2896	2861	2831	2804	2780	2760	2770	2752	2735	2720	2706	2694	
	Concrete + Deck					34.6				$M_{no}/\Omega^{=}$		kip-in/ft		$V_n/\Omega =$			
	(I _{cr} +I _u)/2	= 46.4	inª/ft	_	l _u =	58.2	-			φM _{no} =	61.3	kip-in/ft	_	φ V _n =	3.40	kip/ft	
	Vertical Load Span (in)	5'-0"	5'-6"	6'-0"	6'-6"	7'-0 "	7'-6"	8'-0"	8'-6"	9'-0"	9'-6"	10'-0"	10'-6"	11'-0"	11'-6"	12'-0"	
-	ASD & LRFD - Superimposed Load, W (psf)																
	ASD, W/Ω	906	823	755	695	595	514	448	384	323	275	236	204	177	155	136	
	LRFD, φW L/360	1358	1235	1132	1045	952	823	717	630 384	557 323	495 275	442 236	396 204	357 177	323 155	292 136	
H	LIJUU		- RFD - D	- iaphrac	- Im Shee	- II. d.S.				nent Pat		200	204	111	100	100	
16	Arc Spot Weld 1/2" Effective Dia	3910	3772	3657	3626	3538	3461	3395	3336	3283	3282	3237	3197	3161	3127	3097	
	PAF Base Steel ≥ .25"	3230	3154	3091	3103	3053	3009	2970	2936	2906	2924	2898	2874	2852	2832	2814	
	PAF Base Steel ≥ 0.125"	3157	3087	3029	3046	3000	2959	2924	2893	2865	2885	2861	2839	2818	2800	2783	
	#12 Screw Base Steel ≥ .0385"	3169	3100	3042	3059	3012	2972	2936	2905	2877	2898	2873	2851	2830	2812	2795	
	Concrete + Deck =					39.8				M _{no} /Ω=		kip-in/ft		$V_n/\Omega =$			
1	(l _{cr} +l _u)/2 =	= 50.4	in⁴/ft		l _u =	61.1	ın⁴/ft			фМ∞=	73.5	kip-in/ft		$\phi V_n =$	3.40	kip/ft	
	LRFD - Diaphragn	n Shear,	φ S _n (pit	f / ft) foi				, WWF	Design	ation or	Area	of Steel p	per fool	t width			
es	3/4" Welded Shear Studs 6x6 W1.4xW1.4				6x6 W2.9xW2.9			6x6 W4.0xW4.0			4x4 W4xW4			4x4 W6xW6			
All Gages		$A_s = 0.028$ in ² /ft			A ₂ = 0.058 in ² /ft			$A_s = 0.080$ in ² /ft			$A_s = 0.120$ in ² /ft					in²/ft	
Ī	6 in o.c.	3700				5050			6040			7840			10540		
	12 in o.c. 18 in o.c.	3700 3700				5050 5050			6040 6040			7840 7840		10540 8790			
	10 tri 0.0.		5700			0000			0040			1040			0190		

Composite and Non-Composite Deck Catalog • February 2016 113

2. Open-web Steel joist:
28 LH 12 sheel joist:
28 LH 12 sheel joist @ 4'-0" 0. C
spanning 10'.
Approximate weight 27 plf
→ → 0 = 27 plf + 39 psf · 4' = 143 plf
→ → 1 1.20 = 174.6 plf
Strength capacity: 1.6 L = 1105 - 171.6 = 933.4 (plf)
(S JI page 143)
=> Lollowed =
$$\frac{933.4}{7.6} = 583$$
 (plf)
 $\Rightarrow W_{condition} = \frac{583}{4} = \frac{104}{7.6} psf$ for Solivi sheel
Deflection capacity: Later 108 · $\frac{360}{240} - 143 = 463$ (plf)
($\Delta \le \frac{1}{240}$) => $W_{condition} = \frac{469}{4} = 102 psf$ controls
So the capacity of the steel joist is 10.2 psf

Peterson Structural Engineers, Inc. www.psengineers.com

American National Standard SJI-LH/DLH-2010

STANDARD LRFD LOAD TABLE LONGSPAN STEEL JOISTS, LH-SERIES

Based on a 50 ksi Maximum Yield Strength Adopted by the Steel Joist Institute May 1, 2000 Revised to May 18, 2010 – Effective December 31, 2010

The **BLACK** figures in the Load Table give the TOTAL safe factored uniformly distributed load-carrying capacities, in pounds per linear foot, of LRFD LH-Series Steel Joists.

The approximate joist weights, in pounds per linear foot, given in the Load Table may be added to the other building weights to determine the unfactored DEAD load. In all cases the factored DEAD load, including the joist self-weight, must be deducted from the TOTAL load to determine the factored LIVE load. The approximate joist weights do <u>not</u> include accessories.

The RED figures in the Load Table represent the unfactored, uniform load, in pounds per linear foot, which will produce an approximate joist deflection of 1/360 of the span. This load can be linearly prorated to obtain the unfactored, uniform load for supplementary deflection criteria (i.e. an unfactored uniform load which will produce a joist deflection of 1/240 of the span may be obtained by multiplying the RED figures by 360/240). In no case shall the prorated, unfactored load exceed the unfactored TOTAL load-carrying capacity of the joist as given in the Standard ASD Load Table for Longspan Steel Joists, LH-Series.

The Load Table applies to joists with either parallel chords or pitched top chords. Joists can have a top chord pitch up to 1/2 inch per foot. If the pitch exceeds this limit, the Load Table does not apply. When top chords are pitched, the load-carrying capacities are determined by the nominal depth of the joists at the center of the span. Sloped parallel-chord joists shall use span as defined by the length along the slope,

Where the joist span is in the **RED SHADED** area of the Load Table, the row of bridging nearest the mid span shall be diagonal bridging with bolted connections at chords and intersections. Hoisting cables shall not be released until this row of bolted diagonal bridging is completely installed. The **RED SHADED** area extends up through 60'-0".

Where the joist span is in the **BLUE SHADED** area of the Load Table, all rows of bridging shall be diagonal bridging with bolted connections at chords and intersections. Hoisting cables shall not be released until the two rows of bridging nearest the third points are completely installed. The **BLUE SHADED** area starts after 60'-0" and extends up through 100'-0".

The approximate gross moment of inertia (not adjusted for shear deformation), in inches⁴, of a standard joist listed in the Load Table may be determined as follows:

 $I_j = 26.767$ (W)(L³)(10⁻⁶), where W= RED figure in the Load Table, and L = (span - 0.33) in feet.

Loads for span increments not explicitly given in the Load Table may be determined using linear interpolation between the load values given in adjacent span columns.

*The safe factored uniform load for the spans shown in the SAFE LOAD Column is equal to (SAFE LOAD) / (span). The TOTAL safe factored uniformly distributed load-carrying capacity, for spans less than those shown in the SAFE LOAD Column are given in the MAX LOAD Column.

To solve for an unfactored RED figure for spans shown in the SAFE LOAD Column (or lesser spans), multiply the unfactored RED figure of the shortest span shown in the Load Table by (the shortest span shown in the Load Table – 0.33 feet)² and divide by (the actual span – 0.33 feet)². In no case shall the calculated unfactored load exceed the unfactored TOTAL load-carrying capacity of the joist as determined from the Standard ASD Load Table for Longspan Steel Joists, LH-Series.

									R F						-			_		
			Bas		TANDARD 50 ksi Ma										ot (olf)					
Joist Designation	Approx, Wt in Lbs, Per	Depth	Max Load	SAF	ELOAD* n Los.								AN IN F		or (pri)					
Designation	Linear Fl.	inches	(plf)	B	etween	-						_								
24LH03	(Joists only) 11	24	< 29	1	29-33 17430	34 513	35 508	36 504	37 484	38 460	39 439	40 418	41 400	42 382	43 365	44 351	45 336	46	47	48 296
24LH04	12	24	737	-	21360	235 628	226 597	218 568	204 540	1 <u>88</u> 514	175 490	162 468	152 447	141 427	132 409	124 393	110 376	109 361	102 345	<u>96</u> 333
			_			288	285	246	2.27	210	195	182	169	158	-1-18	138	136	122	114	107
24LH05	13	24	789		22890	673 309	669 297	660 285	628 204	598 244	570	210	520	496	475	456 100	436	420	493 132	387 124
24LH06	16	24	1061	1	30780	906 411	868	832 350	795	756 300	720	685 283	655	625 228	598 211	571	546	522	501	480 152
24LH07	17	24	1166	3	33810	997	957	919 203	582	847	811	774	736	702	669	639	610	583	559	535
24LH08	18	24	1243	1	36060	1060	1015	973	933	895	858	297 817	780	257 745	239 712	682	652	195 625	182	171 576
24LH09	21	24	1464		12450	160 1248	d47 1212	416	388 1146	362	1044	3 - 994	292 948	903	861	238 822	786	208 751	198	194 690
24LH10	23	24	1547		14850	562 1323	5.30 1284	501 1248	±60 1213	424 1182	392 1152	163	1053	313 1002	292 955	272 912	254 873	238 834	223 799	209 766
24LH11	25	24	1630		17280	506	559	-28	500	474	439	406	378	351	326	364	285	248	249	236
296111	20	24	1630		+7200	1390 8,24	1350 593	1312 535	1276	1243 498	1210 172	1180 449	1152 418	1101 388	1051 36	1006 337	963 315	924 294	885 276	850
28LH05	13	28	< 34 623		34-41 21180	42 505	43 484	44 465	45 445	46 429	47	48 397	49 382	50 307	51 355	52 342	53 330	54 319	55 309	56 298
28LH06	16	28	828		28140	219 672	205 643	192 618	180	169	159	150	342	133	128	119	113	107	19/2	97
						289	270	253	592 23.8	568 2-3	546 208	525 197	505 - 186	486	469	451	436 148	421	406	393 126
28LH07	17	28	934	3	31770	757 326	726	696 285	667 267	640 251	615 236	591 222	568 200	547 107	528 186	508 76	490 166	474 158	457	442
28LH08	18	28	1001	3	34020	810	775	744	712	684	657 252	630 236	604	580	556	535	516 175	496 165	478	462 148
28LH09	21	28	1232	4	1880	1000	958	918	879	844	810	778	748	209 721	195 694	185 669	645	622	5.J 601	580
28LH10	23	28	1347	4	15810	422 1093	400	375	351 976	329	309 900	291 864	274 831	258 799	769	228 742	218 715	204 690	193	183 643
28LH11	25	28	1445	4	19140	486 1170	439 1143	414	388 1066	304 1023	982	327 943	30.3 907	873	269 841	255 810	781	225 753	215 727	204
28LH12		-			3970	+98	475	448	423	307	273	441	33	312	294	278	263	249	236	223
	27	28	1587		-	1285 545	1255 520	1227 -190	1200 476	1173 454	1149 435	-1105	1063 383	1023 361	984 340	948 321	913 303	880 285	849 270	819
28LH13	30	28	1654	5	6250	1342	1311 543	1281 513	1252	1224	1198 452	1173	1149	1126 306	1083 373	1041	1002	964 314	930 297	897 281
32LH06	14	32	< 39 647	39-46 25230	47-49 25230	50 507	51 489	52 472	53 456	54 441	55 426	56 412	57 399	58 385	59	60 363	61	62	63	64
			_			211	199	189	179	169	161	150	145	138	373	125	351 119	- 15	530 108	321 104
32LH07	16	32	728	28380	28380	568 225	549 223	529 211	511 200	493 189	477	462 170	447 162	432 154	418 146	406	393 133	381 127	370 121	360 1 🕆
32LH08	17	32	790	30810	30810	616	595	574	553 215	535 205	517 16a	499	483	468	453	439	426	412	400	388
32LH09	21	32	992	38670	38670	774	747	720	694	670 256	648	627	606	586	568	550 180	534	517	502	487
32LH10	21	32	1096	42750	42750	856	825	285 796	270 766	742	243	230 693	667	203 645	624	603	583	564	154 546	157 529
32LH11	24	32	1201	46830	46830	352 937	332 903	315 870	207 840	282 811	267 783	254 757	240 732	218	237 687	200 664	100 643	1/35 624	BC4	(69) 585
32LH12	27	32	1409	54960	54960	305 1101	363 1068	343 1032	325 996	365 961	902 928	277 897	263 867	838	234 811	786	246	206	1HC. 715	187
		_		_	_	460	428	406	384	364	345	327	311	295	281	1257	245	2.15	- 201	1228
32LH13	30	32	1572	61320	61320	1225	1201 480	1177 46 I	1156 444	1113 4.26	1072 397	1035 376	999 354	964 3.56	931 319	900 304	871 293	843 274	815 162	790
32LH14	33	32	1618	63120	63120	1264	1239 495	1215 475	1192	1170 441	1149 417	1107 395	1069 374	1032 355	997 337	964	933	903	874 275	846
32LH15	35	32	1673	65250	65250	1305	1279	1255	1231	1207	1186	1164	1144	1125	1087	1051	1017	984	952	924
			< 43		47-56 57	58	59	60	473 61	464 62	438 63	422 64	402 65	393 66	374 67	68	69	70	306	72
36LH07	16	36	590	25350	25350	438	424 168	411	399	387 160	376	366 134	355	345 172	336 117	327 112	318 107	310 103	301 35	294 06
36LH08	18	36	649	27900	27900	481 194	466	453	439	426	414	402 1 IE	390	379	369	358	349 118	340 113	331 109	322
36LH09	- 21	36	832	35760	35760	616	597	579	561	544	528	513	499	484	471	459	445	433	423	412
36LH10	21	36	916	39390	39390	047 681	295 660	0224 639	619	224 601	198 583	567	500	535	520	507	50 492	480	460	454
36LH11	23	30	1000	42990	42990	742	280 720	248 697	876	857	015 637	018	601	168 583	1 <u>80</u> 567	552	195 537	159	152 500	145 495
36LH12	25	36	1197		51450	2.17	283	239	257	编程	24	224	254	226	1.963	185	18.1	ata d	Hu	150
	_		_	51450	_	889 361	862	835 322	810	784 292	762 279	739 26	717 266	696 213	675 232	655 212	030 213	©18 204	000 105	563 167
36LH13	30	36	1407	60510	60510	1045	1012 395	981 378	951 35a	922 342	894 327	868 312	843 2:3	619 283	796 273	774	753 261	732 243	712	694
36LH14	36	36	1551	66890	66690	1152 150	1132 434	1093	1059	1024	891 364	961	931	903	875	850	820	802	780	757
36LH15	36	36	1635	70320	70320	1213 480	1192 464	1171	1153	1115	1081	1047 375	1015	984	955 317	927	900	874	850 274	82.5

LRFD

American National Standard SJI-LH/DLH-2010

STANDARD ASD LOAD TABLE LONGSPAN STEEL JOISTS, LH-SERIES

Based on a 50 ksi Maximum Yield Strength Adopted by the Steel Joist Institute May 25, 1983 Revised to May 18, 2010 – Effective December 31, 2010

The **BLACK** figures in the Load Table give the TOTAL safe uniformly distributed load-carrying capacities, in pounds per linear foot, of ASD LH-Series Steel Joists.

The approximate joist weights, in pounds per linear foot, given in the Load Table may be added to the other building weights to determine the DEAD load. In all cases the DEAD load, including the joist self-weight, must be deducted from the TOTAL load to determine the LIVE load. The approximate joist weights do not include accessories.

The RED figures in the Load Table represent the uniform load, in pounds per linear foot, which will produce an approximate joist deflection of 1/360 of the span. This load can be linearly prorated to obtain the uniform load for supplementary deflection criteria (i.e. a uniform load that will produce a joist deflection of 1/240 of the span may be obtained by multiplying the RED figures by 360/240). In no case shall the prorated load exceed the TOTAL load-carrying capacity of the joist.

The Load Table applies to joists with either parallel chords or pitched top chords. Joists can have a top chord pitch up to 1/2 inch per foot. If the pitch exceeds this limit, the Load Table does not apply. When top chords are pitched, the load-carrying capacities are determined by the nominal depth of the joists at the center of the span. Sloped parallel-chord joists shall use span as defined by the length along the slope.

Where the joist span is in the **RED SHADED** area of the Load Table, the row of bridging nearest the mid span shall be diagonal bridging with bolted connections at chords and intersections. Hoisting cables shall not be released until this row of bolted diagonal bridging is completely installed. The **RED SHADED** area extends up through 60'-0".

Where the joist span is in the **BLUE SHADED** area of the Load Table, all rows of bridging shall be diagonal bridging with bolted connections at chords and intersections. Hoisting cables shall not be released until the two rows of bridging nearest the third points are completely installed. The **BLUE SHADED** area starts after 60'-0" and extends up through 100'-0".

The approximate gross moment of inertia (not adjusted for shear deformation), in inches⁴, of a standard joist listed in the Load Table may be determined as follows:

 $I_j = 26.767(W)(L^3)(10^{-6})$, where W= RED figure in the Load Table, and L = (span - 0.33) in feet.

Loads for span increments not explicitly given in the Load Table may be determined using linear interpolation between the load values given in adjacent span columns.

*The safe uniform load for the spans shown in the SAFE LOAD Column is equal to (SAFE LOAD) / (span). The TOTAL safe uniformly distributed load-carrying capacity, for spans less than those shown in the SAFE LOAD Column are given in the MAX LOAD Column.

To solve for a RED figure for spans shown in the SAFE LOAD Column (or lesser spans), multiply the RED figure of the shortest span shown in the Load Table by (the shortest span shown in the Load Table – 0.33 feet)² and divide by (the actual span – 0.33 feet)². In no case shall the calculated load exceed the TOTAL load-carrying capacity of the joist.

		Ba			RD LOAD TAE si Maximum \										Foot (olf)				
Joist Designation	Approx Wt in Lbs Per Linear Ft	Depth in inches	Max Load (plf)		AFELOAD* in Lbs. Between								N IN F							
	(Joists only)		< 29		29-33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
24LH03	11	24	401		11620	342	339	336 218	323	307 185	293 175	279 162	267	255 141	244	234 124	224 116	215 109	207	199 96
24LH04	12	24	491		14240	419	398	379	360	343	327	312	298	285	273	262	251	241	231	222
24LH05	13	24	526	-	15260	288	265 446	246 440	419	210 399	195 380	182 363	169 347	1 <u>58</u> 331	148 317	138 304	130 291	122 280	114 269	107 258
24LH06	16	24	708	-	20520	308 604	297 579	285 555	264 530	244 504	226 480	210 457	196	182 417	171 399	160 381	150 364	141 348	132	124
24LH07	17	24	717	-	22540	411 665	382 638	356 613	331 588	308 565	<u>284</u> 541	263 516	245 491	228 468	211 446	197 426	184 407	172 389	161 373	152 357
						452	421	393	367	343	320	297	276	257	239	223	208	195	162	171
24LH08	18	24	829		24040	707 480	677 447	649 416	622 388	597 362	572 338	545 314	520 292	497 272	475 254	455 238	435	417 208	400 196	384 184
24LH09	21	24	976		28300	832 562	808 530	785 501	764 460	731 424	696 393	663 363	632 337	602 313	574 292	548 272	524 254	501 238	480 223	460 209
24LH10	23	24	1031		29900	882	856	832	809	788	768	737	702	668	637	608	582	556	533	511
24LH11	25	24	1087		31520	596 927	559 900	875	500 851	474 829	439 807	406	378 768	351 734	326 701	304 671	285 642	616	249 590	234 567
-			< 34		34-41	624 42	588 43	656 44	525 45	498 46	472	449 48	418 49	388 50	361 51	337 52	315 53	294 54	276 55	259 56
28LH05	13	28	415		14120	337	323	310	297	286	275	265	255	245	237	228	220	213	206	199
28LH06	16	28	552	-	18760	219 448	429	412	180 395	169 379	159 364	150 350	142 337	1 <u>33</u> 324	126 313	119 301	113 291	107 281	102 271	97 262
28LH07	17	28	623	-	21180	289 505	270 484	253 464	-238 445	223 427	209 410	197 394	18ô 379	175 365	166 352	1 <u>56</u> 339	148 327	140 316	133 305	1 <u>26</u> 295
			-	-	22680	326	305	285	267	.251	236	222	209	197	186	176	166	158	150	142
28LH08	18	28	667			540 348	517 325	496 305	475 285	456 208	438 252	420 236	403 222	387 209	371 196	357 185	344 175	331 165	319 156	306 148
28LH09	21	28	821		27920	667 428	639 400	612 375	586 351	563 329	540 300	519 291	499 274	481 258	463 243	446 228	430 216	415 204	401 193	387 183
28LH10	23	28	898		30540	729 466	704 439	679 414	651	625 064	600 342	576	554 303	533 285	513	495 255	477	460 228	444 215	429 204
28LH11	25	28	964		32760	780	762	736	711	682	655	629	605	582	561	540	521	502	485	468
28LH12	27	28	1058	-	35980	493 857	475 837	448 818	423 800	397 782	373 766	351 737	331 709	312 682	294 656	278 632	263 609	249 587	236 566	223 546
28LH13	30	28	1103		37500	545 895	520 874	496 854	476 835	454 816	435 799	408	383 766	361 751	340 722	321 694	303 668	285 643	270 620	256 598
EGEITTO		20				569	543	518	495	472	452	433	415	396	373	352	332	314	297	281
32LH06	14	32	< 39 431	39-46 16820	47-49 16820	50 338	51 326	52 315	53 304	54 294	55 284	56 275	57 260	58 257	59 249	60 242	61 234	62 227	63 220	64 214
32LH07	16	32	485	18920	18920	211	199 366	189 353	179 341	169 329	161 318	153 308	145 298	138 288	131	125 271	119 262	114 254	108 247	104 240
32LH08	17	32	527	20540	20540	235	223 397	211	200	189 357	179 345	170	162 322	154 312	146	140 293	133	127	121 267	116
						255	242	229	216	205	194	134	175	167	159	151	144	137	131	259 125
32LH09	21	32	661	25780	25780	516 319	498 302	480 285	463 270	447 256	432 243	418 230	404 219	391 208	379 198	367 189	356 180	345 172	335 164	325 157
32LH10	21	32	731	28500	28500	571	550	531 315	512 297	495	478	462 254	445	430	416	402 206	389 196	376 186	364 178	353 169
32LH11	24	32	801	31220	31220	625	602	580	560	541	522	505	488	473	458	443	429	416	403	390
32LH12	27	32	939	36640	36640	385 734	363 712	343 688	325 664	308 641	292 619	277 598	263 578	251 559	239 541	524	216 508	206 492	196 477	_187 463
32LH13	30	32	1048	40880	40880	450 817	428 801	406 785	384 771	364	345	327 690	311 666	295 643	281 621	267 600	255 581	243 562	232 544	221 527
						500	480	461	444	420	397	376	354	336	319	304	288	275	262	249
32LH14	33	32	1079	42080	42080	843 515	826 495	810 476	795 458	780 440	766 417	738 395	713 374	688 355	665 337	643 321	622 304	602 290	583 276	564 264
32LH15	35	32	1115	43500	43500	870 532	853 511	837 492	821 473	805 454	791 438	776	763 407	750 393	725 374	701 355	678 338	656 322	635 306	616 292
			< 43	43-46	No. of Concession, Name of Street, or other Division of Street, or other D	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72
36LH07	16	36	393	16900	16900	292 177	283 168	214	200 153	258 146	251 140	244 34	237 128	230 122	224 117	218 112	212 107	207 103	201 99	196 95
36LH08	18	36	433	18600	18600	321 194	311 185	302 176	293 168	284 160	276 153	268 146	260 140	253 134	246 128	239 123	233 118	227 113	221 109	215 104
36LH09	21	36	554	23840	23840	411	398	386	374	363	352	342	333	323	314	306	297	289	282	275
36LH10	21	36	611	26260	26260	247 454	440	224 426	214 413	204 401	195 389	186 378	179 367	171 357	163 347	157 338	150 328	144 320	138 311	133 303
36LH11	23		-	-	28660	273 495	260	248	236	225	215 425	206	197	1 <u>88</u> 389	180	173 368	165 358	159 348	152 339	146 330
	-	36	667	28660		297	480 283	465 269	451 257	438 246	234	412 224	401 214	205	378 196	188	180	173	166	159
36LH12	25	36	798	34300	34300	593 354	575 338	557 322	540 307	523 292	508 279	493 267	478 255	464 243	450 232	43 7 222	424 213	412 204	400 195	389 187
36LH13	30	36	938	40340	40340	697	675	654	634	615	596	579	562	546	531	516	502	488	475	463
36LH14	36	36	1034	44460	44460	415 768	395 755	376 729	359 706	342 683	327 661	312 641	298 621	285 602	273 584	262 567	251 551	240 535	231 520	222 505
36LH15	36	36	1090	46880	46880	456 809	434 795	412 781	392 769	373 744	356 721	339 698	323 677	309 656	295 637	283 618	270 600	259 583	247 567	237 551
JOLITIO	50	50	1030	40000	40000	480	464	448	434	413	394	375	358	342	327	312	299	286	274	263

3. Steel beam (interior):
W24 × 84 C: 40' center spanning 20 fr
braced @ 4 ft by the steel joists.
Weight of the beam: 84 plf
Contract Contraction of the Cont
$\frac{1}{120} = 20 \text{ fr} = \frac{1}{120} = 2296.8 \text{ plf}$
-jn = 0 = 2 = 00.0 pcp
Strength Copacity:
For W24×84 Lp = 6.894 (AISC Table 3-2)
\$ Mpx = 890 Rip- B
$Lb = 4\beta < L\rho = 6.83\beta$
=> \$1 Mnx = 840 hip-fr
= 16.8 kp/fr = 16.8 kp/fr = 16,800 plf = 16,800 plf
=> Lallowed = 16,800-2,296.8 = 9064.5 (plf) 1.6
=) W_{ii} allowed = $\frac{9064.5}{40} = \frac{226.6 \text{ psf}}{40}$
es L
project date
eterson Structural Engineers, Inc. www.psengineers.com

Peffection Capacity: For W24×84: Isc = 2370 m4 A ≤ L/240 for O+L $\Delta = \frac{5w\ell^4}{384 \text{ FI}_{v}}$ D = L for Lalone $\frac{L}{240} = \frac{20.12}{240} = 1 \text{ in } \frac{L}{360} = \frac{20.12}{360} = \frac{2}{3} \text{ in }$ Work = 1914 plf + Lallowed 1 = 159.5 lbs/in + Lallowed 5 (159:5+ Lallared) (20.12) = 1 384 29,000,000 . 2370 (=) " Ladwed = 1431.5 (6s/in =) Whallowed = 429 pst 5. (Lallowed) - (20.12) = 2 384.29.10 .2370 =) Lallored = 1060 lbs/m => Wallowed = 318 pst => So, the capacity of the Interior beam is 226.6 psf date project of designer sheet

5. Steel learn (edge):
W 21 x 50 support 20 ft deck and span 20 ft.
unbraced.
Weight of the beam: 50 plf.
D = 50plf + 39 psf · 20' + 27 pff ·
$$\frac{20'}{4'}$$
 = 965 (plf)
=> A 2 D = 4158 plf.
Strength (opacity:
ForW21 x 50 : Lpn = 4.59 ft
MMpx = 413 l.p.ft
LL = 4ft < Lpx
=> $\phi_{S} M_{nx} = \phi_{S} M_{pxc} = 413 l.p.ft$
(ADSC Table 3-2)
LL = 4ft < Lpx
=> $\frac{413 \cdot 8}{20^2} = 8, 26 (l.p.ft) = 8,260 plf$
=> $\frac{413 \cdot 8}{20^2} = 4,438.75 (plf)$
=> $\frac{5260 - 4158}{4.6} = 4,438.75 (plf)$

designer

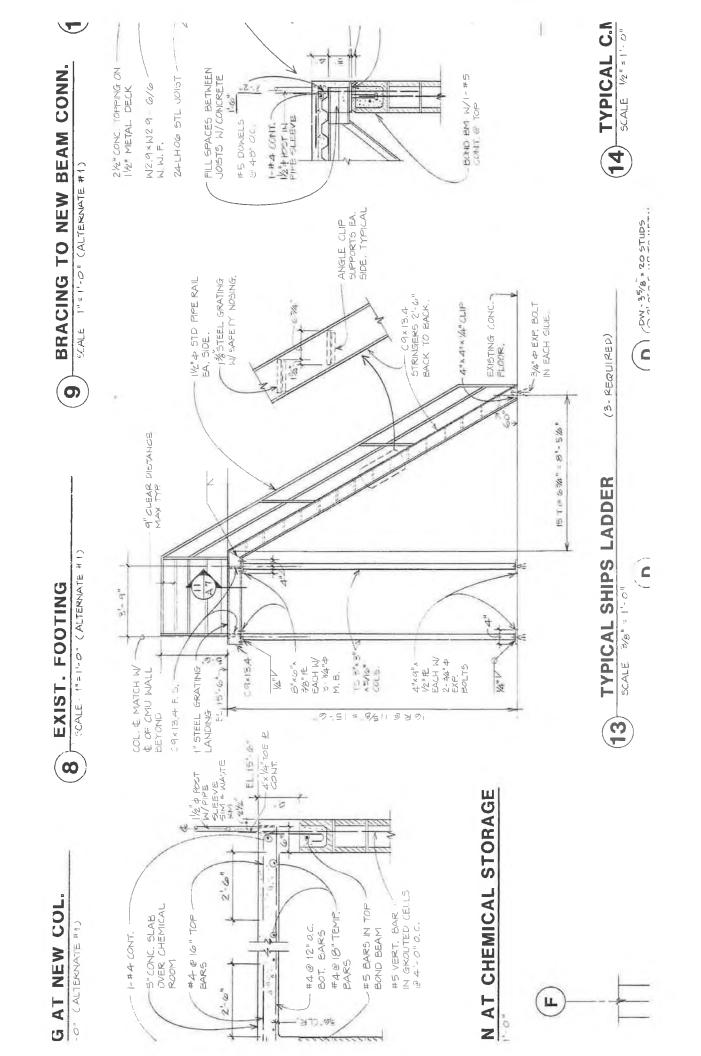
sheet

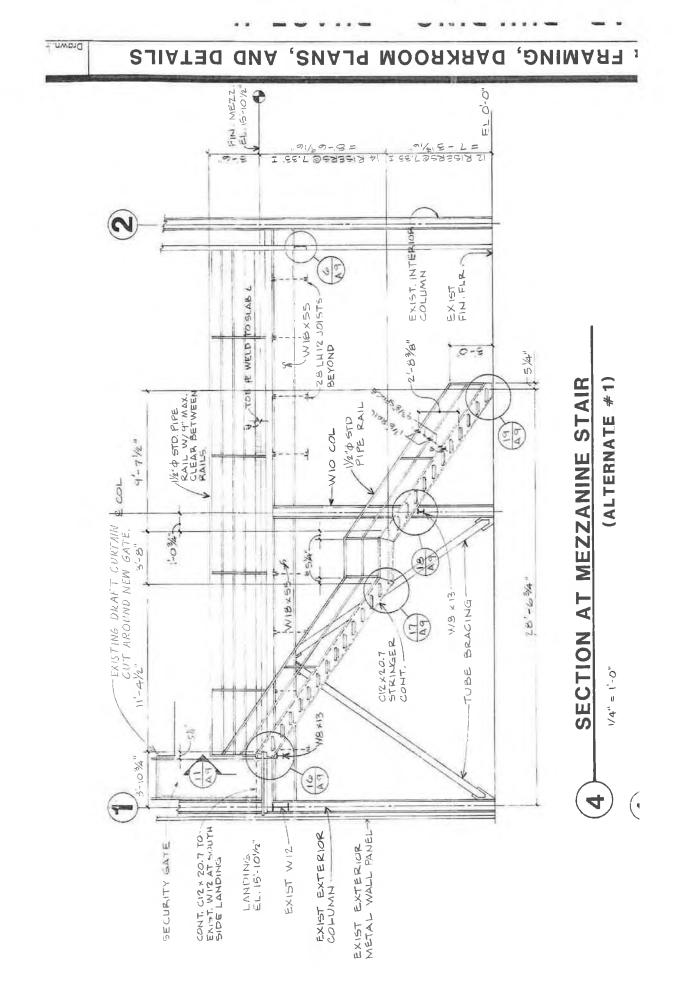
of

Deflection Capacity:
For W21×50 : Ize = 989m9
$= \frac{5 w l^4}{384 E I_m} \qquad \Delta \leq \frac{L}{240} = 1 m \text{for } D \neq L$
$0 \leq \frac{L}{360} = \frac{2}{3}m$ for Lalone
WD+L = 965 plf + Lallowed = 80.417 ebs lin + Lollowed
$E(x_0, \mu_1, 2, 2, \mu_1, \mu_2) + (x_0, \mu_2)^4$
5 (80.417 + Lalloved) · (20.12) = 1
384 29.10 . 984
=) Lallowed = 580 lbs/in => Wallowed = 348psf
Lallowed =) & Ussin =) Wallowed = Jiopsy
$\frac{5(2allowed)(20.12)^4}{384.29.10^6.984} = \frac{2}{3}$
=) Lallowed = 940 lbs/in =) Wallowed = 269 psf
=) So, the capacity of the edge beam is 222psf

project	date		
designer	sheet	of	

Conclusion:


The capacity of the stel joists controls the capacity of the mezzanine plat form. Assume the reight of lightings & mechanical ducts as 2 psf. =) The capacity of the mezzanine is <u>100 psf.</u>



project	date		
designer	sheet	of	

Rebolit concept for mezzanne star /lodden
I / Stair C D on Ab of 82-111.
The slope of the stair is mox
$$\binom{4m^{-4}}{5^{-7}7^{-7}} (\frac{7^{-5}}{5^{-7}7^{-7}7^{-7}}) = 37.3^{\circ}}{4m^{-4}} (\frac{7^{-5}7^{+7}7^{-7}}{1^{-7}7^{+7}7^{-7}}) = 36.3^{\circ}}$$

=> the slope is 37.3° <50°
According to 05H A 3124-12R 2003 poge 14 & 15:
• The 'handrail must be in between 30 inclus and 37 inclus
from the upper surface of the handrail is the surface of
the tread.
The actual handrail height is 2'-8 $\frac{3}{8}$ " = 32.375"
=> It meets the requirement from 05HA.
I/ Ladder on A7 of 82-111.
The slope of the ladder = 60° > 50°
According to 05H A 3124-12R 2003 poge 9:
• the side rail for the ladder must be at least 42" vertically.
According to 05H A 3124-12R 2003 poge 9:
• the side rail for the ladder must be site visit pholograph:
hught of the side rail = 42"
> It meets the requirement from 05HA.

project	date	
designer	sheet	of

PROJECT MEMO

То:	Janet Knoblach, AIA/ Engineering and Architectural Services Architect
From:	Joseph Simon, P.E./ AHBL Structural Engineers
AHBL Office:	Tacoma, WA (253) 383-2422
Date:	9/30/2014
Project:	Modular Building New Storage Rack Installation
AHBL No.:	2130191.29
Subject:	Floor Load Capacity Study

Janet, AHBL was retained to evaluate the capacity of the existing concrete slab on grade to support and anchor new storage racks to be installed in the portion of the Record Center Building currently housing a printing operation. To aid my efforts, I received foundation drawings and rack loading and dimension information from your office. I also contacted Mr. Tom Tate with Northwest Handling Systems to get information pertaining to their standard practices regarding rack installation.

Based on our investigation, it appears that the existing floor slab is adequate to support the proposed racks for load combinations including gravity and seismic forces. Furthermore, the existing slab is sufficiently thick to develop anchorage against seismically induced lateral and uplift forces.

Based on information I received, I understand that the new storage racks will match the width and shelf length of the existing rack system in an adjacent space (5'-4" wide, 10'-0" long shelf length) except that the proposed racks will be about 23'-4" tall to the highest shelf. The proposed racks are to have eleven shelves and each shelf is to support as much as 2160 pounds.

In talking with Mr. Tate, I understand that it is typical for each leg of the rack system to be anchored with two ¹/₂ inch diameter Hilti Kwik Bolt TZ expansion-type anchors with 3.25 inches of embedment. Based on our calculations, this means of anchorage appears to be acceptable. However, the rack manufacturer/supplier/installer should perform engineering calculations in accordance with the IBC detailing and justifying the actual means of anchorage.

I hope this information is helpful. Feel free to call with any questions.

Sincerely,

Joseph Simon, P.E.

GA

ENERGY SERVICES PROPOSAL

INVESTMENT GRADE AUDIT FOR THE STATE MODULAR BUILDING ENERGY UPGRADES

PREPARED BY UNIVERSITY MECHANICAL CONTRACTORS, INC. November 27, 2012

TABLE OF CONTENTS

- 1.0 EXECUTIVE SUMMARY
- 2.0 EXISTING CONDITIONS
- 3.0 FACILITY AUDIT & ANALYSIS
- 4.0 PROPOSED SCOPE OF WORK
- 5.0 **PROJECT FINANCIALS**
- 6.0 MEASUREMENT AND VERIFICATION
- 7.0 IMPLEMENTATION PLAN
- 8.0 APPENDIX

1.0 EXECUTIVE SUMMARY

University Mechanical Contractors, (UMC), is pleased to have the opportunity to present this Investment Grade Audit for the State Modular Building Energy Upgrades. The scope of this project is focused on reducing energy usage and improving the heating and cooling systems serving the facility. After performing a complete audit and analysis of the boiler plant and the chiller plant, we have worked directly with the state of WA Department of Enterprise Services to develop an energy conservation and facility upgrade program. When implemented, this program will provide the following benefits.

Energy and Water Conservation Benefits:

- 1. Estimated annual savings include 12,227 therms natural gas and 100,647 kWh (1,566 million Btus)*. This equates to \$21,881 / year at current utility rates.
- 2. Estimated PSE conservation incentives of \$13,500
- 3. Estimated Annual Operational Savings of \$1,667

Notes: * (The savings shown here are estimated savings. See Section 6.1 for guaranteed energy savings)

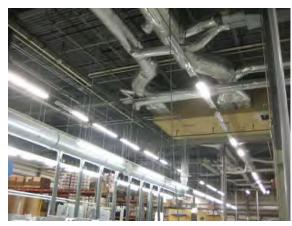
Atmospheric Benefits:

This Project will eliminate	197,660	lbs CO ₂ / Year from the atmosphere
This is the Equivalent of Planting	<u>4,416</u>	Trees
OrRemoving	<u>13</u>	Cars from the Road

Facility Infrastructure Benefits:

- 1. Upgrades lighting system with new lamps and fixture replacements in select locations.
- 2. Replaces all remaining pneumatic control devices in the facility with DDC. This includes the large pneumatic HW valves located in the boiler room.
- 3. Improves ventilation air quality supplied to printing area.

UMC is pleased to provide this project that meets the initial goals and provides substantial benefits for the State Modular Building. The estimated project investment; estimated utility incentive; and guaranteed utility consumption savings resulting from the project's implementation are shown in the following table.


Savings and investme Utility Conservation & Facility Upgrade Measures	Re	Suffing Annual	Est	y imated rational		otential Utility		aranteed Project	Simple Payback
		vings ⁽¹⁾		avings		ebate ⁽²⁾		Cost	ayback
		\$		\$		\$		\$	Yrs
	\$	-	\$	-	\$	-	\$	-	
UCM1: Lighting & Lighting Controls Upgrades	\$	6,043		1,500	\$	13,500	\$	87,650	9.8
	\$	-	\$	-	\$	-	\$	-	
	\$	-	\$	-	\$	-	\$	-	
UCM2: HVAC Controls Upgrade	\$	1,156	\$ \$		\$	-	\$ \$	101,332	87.7
	\$	·····	ş S		ş Ş	-	۹ \$	······	
UCM3: Energy Based Re-Commissioning	\$	9,717	\$		\$	-	\$	87,448	9.0
	\$	-	\$	-	\$	-	\$	-	
Subtotal	\$	16,916	\$	1,500	\$	13,500	\$	276,430	14.3
							\$	-	
Bond							\$	4,146	
Project Supervision (on-site)							\$	-	
Subtotal - Construction	\$	16,916	\$	1,500	\$	13,500	\$	280,576	14.5
Additional Project Development									
and Implementation Costs									
Investment Grade Audit							\$	10,875	
Mechanical Design							\$	13,215	
Lighting Design							\$	4,383	
Project Management							\$	16,586	
M&V (Years 2 & 3)							<u>`</u>	TBD	
Overhead							\$	27,643	
Profit							\$	22,114	
								····· / ····	
Total Construction Cost - (All Measures / Excluding Tax)	\$	16,916	\$	1,500	\$	13,500	\$	375,392	19.7
Construction Contingency	_						\$	20,732	
							۹ \$	20,732	
Subtotal							\$	396,124	
Construction Allowance for B&G							*		
WA State GA Project Management Fee									
WA State GA M&V Fee (Years 2 & 3 total)	_								
Estimated Tax (@ 8.7%)							\$	32,659	
Total Installed Cost (Including Contingency)							\$	428,783	22.5
Notes:									
(1) Annual utility savings (\$) are based on current utility rate schedule									
(2) Rebates & Incentives are estimated, but not guaranteed									
(3) Estimated Tax applies to Total Constuction Cost, excluding contingency									

Savings and Investment Summary

We are excited to be the Energy Service Company (ESCO) partnering with Washington State, and will continue to work collaboratively in planning, developing and implementing a seamless project that achieves the financial, facility, engineering, and operational objectives.

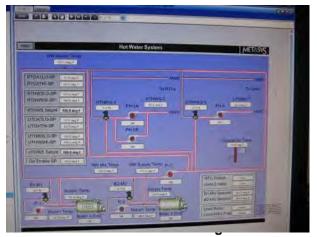
2.0 EXISTING CONDITIONS

2.1 Facility Description & Overview

Overview:

The State Modular Building is a 97,600 square foot, production, warehouse & office facility. The facility was constructed phases. The first phase. in two constructed in 1979, consists of a 40,000 sqft low bay area currently used for printing, storage and fulfillment and a 57,600 sqft high bay area that houses the printing equipment and production department. The second phase. implemented in 1983, consisted of tenant

improvement in the high bay section. This facility is located directly adjacent to the Isabella Bush Records Center in Tumwater. This facility is currently occupied by the state printing department. There is currently some question as to the long term utilization of this facility and whether it will be modified to serve a different function in the near term.



HVAC System:

The HVAC system consists of four (4) rooftop mounted dual duct VAV units. There are two units (S-1 & S-2) that are located on the low bay section of the facility and two (S-3 & S-4) that are located on the high bay section. Each of these RTUs utilize HW and CHW from the central systems to heat & cool the respective hot/cold deck of each system. These units provide air to DD terminal boxes located throughout the facility.

Hot Water System:

Heating for the facility is provided by two (2) standard efficiency Burnham boilers located in a second floor mechanical room. The heating HW is distributed to the facility via a primary/secondary pumping system. There are two secondary loops, one of which serves the RTUs while the second serves ceiling hung unit heaters that are located at roll-up doors throughout the facility.

Chilled Water System:

A 300 ton Carrier water cooled centrifugal chiller (installed in 1999) is utilized to generate CHW for the facility. This system utilizes a BAC cooling tower (located on the roof) to reject heat. The CHW circulation system distributes CHW to the four RTUs.

Domestic Hot Water:

Domestic hot water (DHW) requirements are provided through small electric DHW heaters.

Energy Management Systems:

The majority of the facility is controlled via a Johnson Control Metasys DDC system.

Lighting:

The lighting for this facility is comprised primarily of a combination of 4' fluorescent fixtures with T8 32 watt lamps in a majority of the facility and 8' fluorescent fixtures with T12 HO lamps throughout the high bay production area.

Water Fixtures:

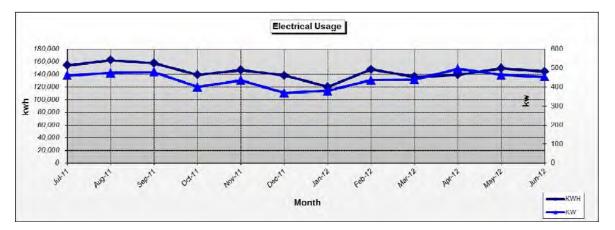
Water fixtures serving the facility are primarily high flow fixtures, consisting of 3.5 gpf water closets, 1.0 gpf urinals and 2.2 gpm faucets.

3.0 FACILITY AUDIT & ANALYSIS

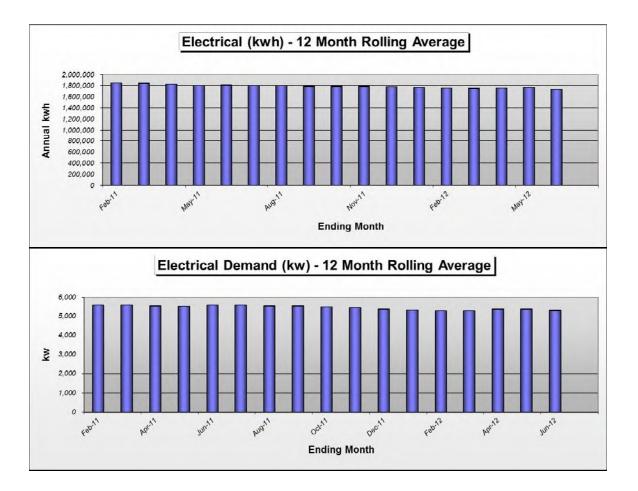
3.1 Utility Data Analysis

Utility Suppliers

The individual utility suppliers are listed below.


Electricity & Natural Gas

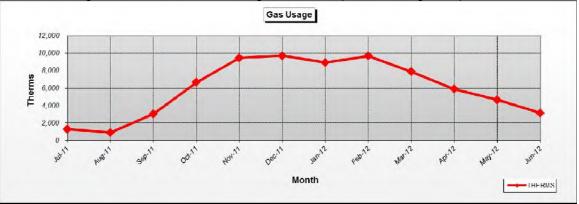
Puget Sound Energy provides electricity and Natural Gas for the facility. The observed electrical blended rate over the last 12 months is \$0.096/kwh. The average natural gas rate during this same time frame was \$1.065/therm. The detailed baseline utility rate is shown in Section 6.


Electric Utility Data

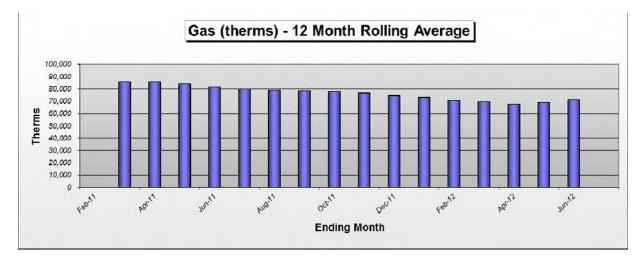
Throughout the period starting June 2011 and ending May 2012, the facility consumed 1,736,800 kWh of electricity. The annual electric demand for the same period was 5,289 kW, with a monthly peak of 496 kW in April of 2012 and a monthly low of 369 kW in December.

The following charts shows historical electric consumption and demand during this period.

One method, to illustrate the upward or down ward trend of utility usage over a long period of time is through the use of a 12-month rolling average chart (shown below). Each bar on the following charts represents the total kW or kWh for the previous 12 months (including the month noted on the x-axis).



As illustrated in the chart above, the electrical usage and demand have both remained fairly consistent over the recent past.


Natural Gas Utility Data

Throughout the period starting June 2011 and ending May 2012, the facility consumed 71,120 therms of gas, with a monthly peak of 9,704 therms in December of 2011 and a monthly low of 893 therms in August of 2011.

The following chart shows historical gas consumption during this period.

As illustrated in the following chart, there has been a slight downward trend in annual gas usage since March of 2011. This could be due primarily to weather fluctuations, but most likely there has been some effect from the recent controls commissioning that has been implemented by L&I.

Energy Use Index

The Energy Use Index (EUI) is a method used to compare the energy usage between similar facilities in geographic regions throughout the United States. This EUI is a measure of the total energy usage (in British Thermal Units – Btu) divided by the total square footage of the facility. <u>The EUI for the State Modular Building is</u> 133,603 Btu/sqft/yr. This facility is very hard to benchmark against other facilities due to its unique and varied usage characteristics.

3.2 Building Baselines

For the purposes of this project, the proposed utility usage Baseline consumption for the State Modular Building is provided below.

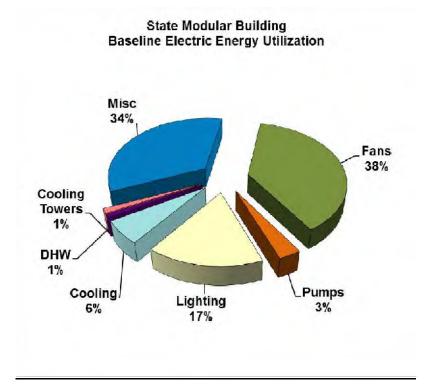
MONTH	ELECTRICAL KWH	DEMAND KW	ELECTRICAL (\$)	GAS THERMS	GAS (\$)	UTILITY TOTAL (\$)
Jul-11	154,400	460	\$14,073	1,287	\$1,488	\$15,561
Aug-11	162,400	475	\$14,737	893	\$1,053	\$15,790
Sep-11	157,600	478	\$14,601	3,031	\$3,411	\$18,012
Oct-11	139,600	401	\$13,883	6,651	\$7,330	\$21,213
Nov-11	146,800	435	\$14,721	9,454	\$9,957	\$24,679
Dec-11	138,400	369	\$13,475	9,704	\$10,220	\$23,695
Jan-12	120,000	380	\$12,083	8,911	\$9,388	\$21,471
Feb-12	148,000	437	\$14,805	9,672	\$10,187	\$24,992
Mar-12	136,000	440	\$13,582	7,871	\$8,289	\$21,870
Apr-12	139,600	496	\$13,011	5,876	\$6,159	\$19,169
May-12	149,600	464	\$13,749	4,632	\$4,899	\$18,648
Jun-12	144,400	454	\$13,414	3,138	\$3,342	\$16,756
Subtotals	1,736,800	5,289	\$166,133	71,120	\$75,723	\$241,856

State Modular Building – Proposed Utility Usage Baseline

Baseline Adjustment

The implementation of UCM-3 Energy Base Re-Commissioning will result in an increased amount of ventilation air being supplied to the facility throughout the year. This air will have to be conditioned, and as a result there will be an increase in the baseline energy usage to account for this newly conditioned air. This additional energy usage has been estimated using a BIN weather analysis (provided in the appendix). This baseline adjustment will result in the following increased utility usage.

Adjusted Annual Electrical Energy Usage:


1,736,800 kWh + 25,344 kWh (adjustment) = 1,762,144 kWh

Adjusted Annual Electrical Energy Usage:

71,120 therms + 2,603 therms (adjustment) = 73,723 therms

Baseline Operating Practices

The operating practices during the Baseline period determine the utility consumption shown in the Tables shown above. The information in the following tables outlines the operating characteristics that were in effect during the Baseline period, as determined during the Investment Grade Audit.

EQUIPM ENT	DESCRIPTION		QTY	HP	ĸw	OPERATING HRS/YR	ANNUAL KWH	ANNUAL COST
Fans								
	Supply Fans		_					
S-1	Low Bay North		1	15.00	6.8	8,760	59,771	\$5,720
S-2	Low Bay South		1	20.00	9.1	8,760	79,695	\$7,627
S-3	High Bay West		1	25.00	11.4	8,760	99,618	\$9,533
S-4	High Bay East		1	30.00	13.6	8,760	119,542	\$11,440
0 4	Return Fans			00.00	-	0,700	110,042	\$0
R-1	Low Bay North		1	5.00	2.3	8,760	19,924	\$1,907
R-2	Low Bay South		1	7.50	3.4	8,760	29,885	\$2,860
R-3	High Bay West		1	15.00	6.8	8,760	59,771	\$5,720
R-4	High Bay East		1	20.00	9.1	8,760	79,695	\$7,627
	EXHAUST FANS						-	
EF-1	Dark rm		1	0.08	0.1	4,680	284	\$27
EF-2	Plate rm		1	0.10	0.3	4,680	1,193	\$114
EF-3	Dark rm		1	0.10	0.3	4,680	1,193	\$114
EF-4	Dark rm		1	0.10	0.4	4,680	2,059	\$197
EF-5	chemstor		. 1	0.10	0.1	8,760	638	\$61
EF-6	locker rm		. 1	0.10	0.1	4,680	341	\$33
EF-7			1	30.00	21.8			
	w aste paper					4,680	102,184	\$9,779
EF-8	Ludlow Machine		1	0.10	0.1	4,680	341	\$33
E-8	Media Processing		1	0.75	0.5	4,680	2,555	\$244
	Relief Fans						-	\$0
Ref-1	Office Area		1	0.25	0.2	4,160	757	\$72
Ref-2	Office Area		1	0.25	0.2	4,160	757	\$72
H-8	109		1	0.05	0.0			
H-9	Lunchroom		1	0.05	0.0			
H-10	101		1	0.05	0.0			
H-10 H-11	107		1					
				0.05	0.0			
H-12	Corridor		1	0.03	0.0			
H-13	Receiving #125		1	0.17	0.1			
H-14	Receiving #125		1	0.17	0.1			
H-15	Receiving #125		1	0.17	0.1			
H-16	Receiving #125		1	0.17	0.1			
H-17	Maint. Grnds Entry		1	0.13	0.1			
H-18	Bir Rm		1	0.05	0.0			
H-19	Chir Rm		1	0.04	0.0			
H-20	Mezz. Storage		1	0.04	0.0			
H-21	Mezz. Storage		1	0.04	0.0			
Boiler 1			1		1.9			
Boiler 2			1		1.9			
	Subtotal				91.2		660,201	\$63,181
Pumps							-	
. umpo	Circulation Pumps		_					
R-3	CHW(Armstroing)		1	25.00	18.2	500	9,098	\$871
R-3								
	CNDW Pump		1	20.00	14.6	250	3,639	\$348
R-5	CNDW Pump		1	20.00	14.6	250	3,639	\$348
H-3	RTU Pump		1	5.00	3.6	4,160	15,138	\$1,449
H-4	Cab htrs & Unit htrs		1	2.00	1.5	4,160	6,055	\$579
H-5	Blr H-1 Recirc Pump		1	2.00	1.5	4,160	6,055	\$579
H-6	Blr H-2 Recirc Pump		1	2.00	1.5	4,160	6,055	\$579
	HHW Primary Loop Pump		1		3.0	1,820	5,481	\$525
	Subtotal		_		58.3		55,161	\$5,279
Casling	oubiola		_		00.0		00,101	<i>\\</i> 0,210
Cooling	CRCU		- 1	0.50	0.4	1.100	-	6445
R-6			1	0.50	0.4	4,160	1,514	\$145
R-7	Air Cooled Condenser		1	0.33	0.2	4,160	999	\$96
CH-1	Chiller (York 300 Centrifugal w / vfd)		1		210.0	500	105,000	\$10,049
	Subtotal				210.6			
	ers						107,513	\$10,289
Coolina Towe							107,513	\$10,289
Cooling Towe CT-1	Fan		1	20.00	14.6	500	-	
Cooling Towe	Fan		1	20.00	14.6	500	- 7,278	\$697
	Fan		1	20.00 20.00	14.6	500	- 7,278 7,278	\$697 \$697
	Fan Pan Heater				14.6 7.0		- 7,278 7,278 350	\$697 \$697 \$33
CT-1	Fan		1		14.6	500	- 7,278 7,278	\$697 \$697
CT-1 Lighting	Fan Pan Heater Subtotal		1		14.6 7.0	500	- 7,278 7,278 350	\$697 \$697 \$33 \$1,427
CT-1 Lighting Percentage of A	Fan Pan Heater Subtotal Annual Electrical Usage		1		14.6 7.0	500 50	- 7,278 7,278 350 14,906 -	\$697 \$697 \$33 \$1,427 \$0
CT-1 Lighting	Fan Pan Heater Subtotal Annual Electrical Usage		1		14.6 7.0	500	- 7,278 7,278 350	\$697 \$697 \$33 \$1,427
CT-1 Lighting Percentage of A Watts per Squa	Fan Pan Heater Subtotal Annual Electrical Usage	75%	1		14.6 7.0	500 50	- 7,278 7,278 350 14,906 -	\$697 \$697 \$33 \$1,427 \$0
CT-1 Lighting Percentage of A Watts per Squa Percent Lights	Fan Pan Heater Subtotal Annual Electrical Usage are Foot On at any one time		1		14.6 7.0	500 50	- 7,278 7,278 350 14,906 - - 283,235	\$697 \$697 \$33 \$1,427 \$0 \$27,106 \$0
CT-1 Lighting Percentage of A Watts per Squa	Fan Pan Heater Subtotal Annual Electrical Usage are Foot On at any one time ancy %	75%	1		14.6 7.0 36.1	500 50	- 7,278 7,278 350 14,906 - - - 283,235 - -	\$697 \$697 \$33 \$1,427 \$0 \$27,106 \$0 \$0 \$0
CT-1 Lighting Percentage of J Watts per Squa Percent Lights Building Occup	Fan Pan Heater Subtotal Annual Electrical Usage are Foot On at any one time		1		14.6 7.0	500 50	- 7,278 7,278 350 14,906 - - 283,235	\$697 \$697 \$33 \$1,427 \$0 \$27,106 \$0
CT-1 Lighting Percentage of <i>J</i> Watts per Squa Percent Lights Building Occup DHW	Fan Pan Heater Subtotal Annual Electrical Usage are Foot On at any one time ancy % Subtotal		1		14.6 7.0 36.1	500 50 4,472	7,278 7,278 350 14,906 - - 283,235 - - 283,235	\$697 \$697 \$33 \$1,427 \$0 \$27,106 \$0 \$27,106
CT-1 Lighting Percentage of / Watts per Squa Percent Lights Building Occup DHW A-2	Fan Pan Heater Subtotal Annual Electrical Usage are Foot On at any one time ancy % Subtotal 40 Gal 2 Element		1		14.6 7.0 36.1	500 50 4,472 900	7,278 7,278 350 14,906 - - 283,235 - - 283,235 - 5,400	\$697 \$697 \$33 \$1,427 \$0 \$27,106 \$0 \$27,106 \$0 \$27,106
CT-1 Lighting Percentage of Watts per Squa Percent Lights Building Occup DHW A-2 A-3	Fan Pan Heater Subtotal Annual Electrical Usage are Foot On at any one time ancy % Subtotal 40 Gal 2 Element 30 Gal 2 Element		1		14.6 7.0 36.1	500 50 4,472	7,278 7,278 350 14,906 - - 283,235 - - 283,235	\$697 \$697 \$33 \$1,427 \$0 \$27,106 \$0 \$27,106
CT-1 Lighting Percentage of / Watts per Squa Percent Lights Building Occup DHW A-2	Fan Pan Heater Subtotal Annual Electrical Usage are Foot On at any one time ancy % Subtotal 40 Gal 2 Element		1		14.6 7.0 36.1	500 50 4,472 900	7,278 7,278 350 14,906 - - 283,235 - - 283,235 - 5,400	\$697 \$697 \$33 \$1,427 \$0 \$27,106 \$0 \$27,106 \$0 \$27,106
CT-1 Lighting Percentage of Watts per Squa Percent Lights Building Occup DHW A-2 A-3	Fan Pan Heater Subtotal Annual Electrical Usage are Foot On at any one time ancy % Subtotal 40 Gal 2 Element 30 Gal 2 Element		1 1 1		14.6 7.0 36.1 - 6.0 5.0	500 50 4,472 900 900	7,278 7,278 350 14,906 - - 283,235 - - 283,235 - - 283,235 - 5,400 4,500 9,000	\$697 \$697 \$33 \$1,427 \$0 \$27,106 \$0 \$27,106 \$27,106 \$27,106
CT-1 Lighting Percentage of Watts per Squa Percent Lights Building Occup DHW A-2 A-3 A-3 A-4	Fan Pan Heater Subtotal Annual Electrical Usage are Foot On at any one time ancy % Subtotal 40 Gal 2 Element 30 Gal 2 Element 80 Gal 2 Element		1 1 1 1 1 1		14.6 7.0 36.1 - 6.0 5.0 10.0 3.0	500 50 4,472 900 900 900	- 7,278 7,278 350 14,906 - - - 283,235 - - 5,400 4,500 4,500 9,000 2,700	\$697 \$33 \$1,427 \$0 \$27,106 \$0 \$27,106 \$0 \$27,106 \$517 \$431 \$861 \$258
CT-1 Lighting Percentage of / Watts per Squa Percent Lights Building Occup DHW A-2 A-3 A-4 A-5 A-5	Fan Pan Heater Subtotal Annual Electrical Usage are Foot On at any one time ancy % Subtotal 40 Gal 2 Element 30 Gal 2 Element 80 Gal 2 Element 20 Gal 1 Element		1 1 1 1 1 1		14.6 7.0 36.1 - 6.0 5.0 10.0	500 50 4,472 900 900 900	7,278 7,278 350 14,906 - - 283,235 - - 283,235 - - 283,235 - 5,400 4,500 9,000	\$697 \$697 \$33 \$1,427 \$0 \$27,106 \$0 \$27,106 \$27,106 \$517 \$431 \$861
CT-1 Lighting Percentage of Watts per Squa Percent Lights Building Occup DHW A-2 A-3 A-3 A-4 A-5 Misc	Fan Pan Heater Subtotal Annual Electrical Usage are Foot On at any one time ancy % Subtotal 40 Gal 2 Element 30 Gal 2 Element 80 Gal 2 Element 20 Gal 2 Element 20 Gal 1 Element	100%	1 1 1 1 1 1		14.6 7.0 36.1 - 6.0 5.0 10.0 3.0	500 50 4,472 900 900 900 900	7,278 7,278 350 14,906 - - 283,235 - - 283,235 - - 5,400 4,500 9,000 2,700 21,600	\$697 \$697 \$33 \$1,427 \$00 \$27,106 \$00 \$27,106 \$00 \$27,106 \$517 \$431 \$861 \$258 \$2,067
CT-1 Lighting Percentage of , Watts per Sque Percent Lights Building Occup DHW A-2 A-3 A-4 A-5 Misc Plug Load w/sc	Fan Pan Heater Subtotal Annual Electrical Usage are Foot On at any one time ancy % Subtotal 40 Gal 2 Element 30 Gal 2 Element 20 Gal 1 Element Subtotal	100%	1 1 1 1 1 1		14.6 7.0 36.1 - 6.0 5.0 10.0 3.0	500 50 4,472 900 900 900	- 7,278 7,278 350 14,906 - - - 283,235 - - 5,400 4,500 4,500 9,000 2,700	\$697 \$607 \$33 \$1,427 \$0 \$27,106 \$27,106 \$27,106 \$27,106 \$27,106 \$22,106 \$2,067 \$13,600
CT-1 Lighting Percentage of / Watts per Sque Percent Lights Building Occup DHW A-2 A-3 A-4 A-5 Misc Plug Load w/sC Avg Load % Oi	Fan Pan Heater Subtotal Annual Electrical Usage are Foot On at any one time ancy % Subtotal 40 Gal 2 Element 30 Gal 2 Element 80 Gal 2 Element 20 Gal 1 Element Subtotal ft n	100%	1 1 1 1 1 1		14.6 7.0 36.1 - 6.0 5.0 10.0 3.0	500 50 4,472 900 900 900 900	7,278 7,278 350 14,906 - - 283,235 - - 283,235 - - 5,400 4,500 9,000 2,700 21,600	\$697 \$697 \$33 \$1,427 \$0 \$27,106 \$0 \$27,106 \$517 \$431 \$258 \$2,067 \$13,600 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$27,106 \$0 \$27,106 \$0 \$27,106 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0
CT-1 Lighting Percentage of , Watts per Sque Percent Lights Building Occup DHW A-2 A-3 A-4 A-5 Misc Plug Load w/sc	Fan Pan Heater Subtotal Annual Electrical Usage are Foot On at any one time ancy % Subtotal 40 Gal 2 Element 30 Gal 2 Element 80 Gal 2 Element 20 Gal 1 Element Subtotal ft n	100%	1 1 1 1 1 1		14.6 7.0 36.1 - 6.0 5.0 10.0 3.0	500 50 4,472 900 900 900 900	7,278 7,278 350 14,906 - - 283,235 - - 283,235 - - 5,400 4,500 9,000 2,700 21,600	\$697 \$607 \$33 \$1,427 \$0 \$27,106 \$27,106 \$27,106 \$27,106 \$27,106 \$22,106 \$2,067 \$13,600
CT-1 Lighting Percentage of / Watts per Sque Percent Lights Building Occup DHW A-2 A-3 A-4 A-5 Misc Plug Load w/sC Avg Load % Oi	Fan Pan Heater Subtotal Annual Electrical Usage are Foot On at any one time ancy % Subtotal 40 Gal 2 Element 30 Gal 2 Element 80 Gal 2 Element 20 Gal 1 Element Subtotal ft n	100%	1 1 1 1 1 1		14.6 7.0 36.1 - 6.0 5.0 10.0 3.0	500 50 4,472 900 900 900 900	7,278 7,278 350 14,906 - - 283,235 - - 283,235 - - 5,400 4,500 9,000 2,700 21,600 - - 142,106	\$697 \$697 \$33 \$1,427 \$0 \$27,106 \$0 \$27,106 \$517 \$431 \$258 \$2,067 \$13,600 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$27,106 \$0 \$27,106 \$0 \$27,106 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0
CT-1 Lighting Percentage of , Watts per Sque Percent Lights Building Occup DHW A-2 A-3 A-3 A-4 A-5 Misc Plug Load w/sc Avg Load % O Building Occup	Fan Pan Heater Subtotal Annual Electrical Usage are Foot On at any one time ancy % Subtotal 40 Gal 2 Element 30 Gal 2 Element 20 Gal 1 Element Subtotal ft n ancy %	100%	1 1 1 1 1 1		14.6 7.0 36.1 - 6.0 5.0 10.0 3.0	500 50 4,472 900 900 900 900	7,278 7,278 350 14,906 - 283,235 - 283,235 - 283,235 - 283,235 - 5,400 4,500 9,000 2,700 21,600 - 142,106 - -	\$697 \$697 \$33 \$1,427 \$0 \$27,106 \$0 \$27,106 \$22,106 \$22,106 \$22,106 \$431 \$861 \$258 \$2,067 \$13,600 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$
CT-1 Lighting Percentage of / Watts per Sque Percent Lights Building Occup DHW A-2 A-3 A-4 A-5 Misc Plug Load w/sC Avg Load % Oi	Fan Pan Heater Subtotal Annual Electrical Usage are Foot On at any one time ancy % Subtotal 40 Gal 2 Element 30 Gal 2 Element 20 Gal 1 Element Subtotal ft n ancy %	100%	1 1 1 1 1 1		14.6 7.0 36.1 - 6.0 5.0 10.0 3.0	500 50 4,472 900 900 900 900	7,278 7,278 350 14,906 - - 283,235 - - 283,235 - - 5,400 4,500 9,000 2,700 21,600 - - 142,106	\$697 \$697 \$33 \$1,427 \$0 \$27,106 \$0 \$27,106 \$517 \$431 \$258 \$2,067 \$13,600 \$0 \$0 \$38,280
CT-1 Lighting Percentage of Watts per Squa Percent Lights Building Occup DHW A-2 A-3 A-4 A-3 A-4 A-5 Misc Plug Load w/sc Avg Load % Oc Building Occup Printing/Copyin	Fan Pan Heater Subtotal Annual Electrical Usage are Foot On at any one time ancy % Subtotal 40 Gal 2 Element 30 Gal 2 Element 20 Gal 1 Element 20 Gal 1 Element 30 Gal 2 Element	100%			14.6 7.0 36.1 - - 6.0 5.0 10.0 3.0 24.0	500 50 4,472 900 900 900 900 900 3,640	7,278 7,278 350 14,906 - 283,235 - 283,235 - 283,235 - 5,400 4,500 9,000 2,700 21,600 - 142,106 - - 384,000	\$697 \$697 \$33 \$1,427 \$0 \$27,106 \$27,106 \$27,106 \$517 \$431 \$258 \$2,067 \$13,600 \$0 \$0 \$0 \$38,280 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0
CT-1 Lighting Percentage of <i>i</i> Watts per Squa Percent Lights Building Occup DHW A-2 A-3 A-4 A-5 Misc Plug Load w/scc Avg Load % O Building Occup	Fan Pan Heater Subtotal Annual Electrical Usage are Foot On at any one time ancy % Subtotal 40 Gal 2 Element 30 Gal 2 Element 20 Gal 1 Element 20 Gal 1 Element Subtotal aft n ancy % g Equipment Controls Air Compressor	100%		20.00	14.6 7.0 36.1 - 6.0 5.0 10.0 3.0 24.0 24.0	500 50 4,472 900 900 900 900 900 900 200	- 7,278 350 14,906 - 283,235 - 283,235 - 283,235 - 283,235 - 5,400 4,500 9,000 2,700 21,600 - 142,106 - - 384,000 - - 384,000	\$697 \$697 \$33 \$1,427 \$0 \$27,106 \$27,106 \$27,106 \$27,106 \$27,106 \$27,106 \$22,7106 \$27,106 \$22,067 \$431 \$861 \$258 \$2,067 \$13,600 \$0 \$0 \$38,260 \$0 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20
CT-1 Lighting Percentage of Watts per Squa Percent Lights Building Occup DHW A-2 A-3 A-4 A-3 A-4 A-5 Misc Plug Load w/sc Avg Load % Oc Building Occup Printing/Copyin	Fan Pan Heater Subtotal Annual Electrical Usage are Foot On at any one time ancy % Subtotal 40 Gal 2 Element 30 Gal 2 Element 20 Gal 1 Element 20 Gal 1 Element Subtotal arc g Equipment controls Air Compressor Printer Air Compressor	100%			14.6 7.0 36.1 - - 6.0 5.0 10.0 24.0 24.0 24.0	500 50 4,472 900 900 900 900 900 900 900 900 900 90	7,278 7,278 350 14,906 - - 283,235 - - 283,235 - - 283,235 - - 283,235 - - 283,235 - - 283,235 - - 283,235 - - 283,235 - - 283,235 - - 384,000 - - 142,106 - - 384,000 - - 384,000 - - - 384,000 - - - - - - - - - - - - - - - - - -	\$697 \$697 \$33 \$1,427 \$0 \$27,106 \$0 \$27,106 \$517 \$431 \$258 \$2,067 \$13,600 \$0 \$0 \$38,260 \$0 \$38,260 \$0 \$38,260 \$0 \$0 \$242 \$3,860
CT-1 Lighting Percentage of Watts per Squa Percent Lights Building Occup DHW A-2 A-3 A-4 A-3 A-4 A-5 Misc Plug Load w/sc Avg Load % Oc Building Occup Printing/Copyin	Fan Pan Heater Pan Heater Subtotal Annual Electrical Usage are Foot On at any one time ancy % Subtotal 40 Gal 2 Element 30 Gal 2 Element 20 Gal 1 Element 20 Gal 1 Element Subtotal aft n ancy % g Equipment Controls Air Compressor Printer Air Compressor Printer Air Compressor	100%		20.00	14.6 7.0 36.1 - - 6.0 5.0 10.0 3.0 24.0 24.0 24.0	500 50 4,472 900 900 900 900 900 900 900 900 1,500 1,501	- 7,278 350 14,906 - 283,235 - 283,235 - 283,235 - 283,235 - 384,000 2,700 21,600 - 142,106 - - 384,000 - - 384,000 - - 384,000 - - 384,000 - -	\$697 \$697 \$33 \$1,427 \$0 \$27,106 \$27,106 \$27,106 \$517 \$431 \$258 \$2,067 \$13,600 \$0 \$0 \$38,200 \$0 \$38,200 \$0 \$42 \$3,860 \$0 \$2,91
CT-1 Lighting Percentage of Watts per Squa Percent Lights Building Occup DHW A-2 A-3 A-4 A-3 A-4 A-5 Misc Plug Load w/sc Building Occup Printing/Copyin	Fan Pan Heater Subtotal Annual Electrical Usage are Foot On at any one time ancy % Subtotal 40 Gal 2 Element 30 Gal 2 Element 20 Gal 1 Element 20 Gal 1 Element Subtotal arc g Equipment controls Air Compressor Printer Air Compressor	100%		20.00	14.6 7.0 36.1 - - 6.0 5.0 10.0 24.0 24.0 24.0	500 50 4,472 900 900 900 900 900 900 900 900 900 90	7,278 7,278 350 14,906 - - 283,235 - - 283,235 - - 283,235 - - 283,235 - - 283,235 - - 283,235 - - 283,235 - - 283,235 - - 283,235 - - 384,000 - - 142,106 - - 384,000 - - 384,000 - - - 384,000 - - - - - - - - - - - - - - - - - -	\$697 \$697 \$33 \$1,427 \$0 \$27,106 \$27,106 \$27,106 \$517 \$431 \$258 \$2,067 \$13,600 \$0 \$0 \$38,280 \$0 \$38,280 \$0 \$38,280 \$0 \$242 \$3,860
CT-1 Lighting Percentage of Watts per Squa Percent Lights Building Occup DHW A-2 A-3 A-4 A-3 A-4 A-5 Misc Plug Load w/sc Building Occup Printing/Copyin	Fan Pan Heater Pan Heater Subtotal Annual Electrical Usage are Foot On at any one time ancy % Subtotal 40 Gal 2 Element 30 Gal 2 Element 30 Gal 2 Element 20 Gal 1 Element 20 Gal 1 Element git n ancy % g Equipment Controls Air Compressor Printer Air Compressor Air Dryer (Dominick-Hunter)	100%		20.00	14.6 7.0 36.1 - - 6.0 5.0 10.0 3.0 24.0 24.0 24.0 24.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1	500 50 4,472 900 900 900 900 900 900 900 900 1,500 1,501	7,278 7,278 350 14,906 - - 283,235 - - 283,235 - - 283,235 - - 283,235 - - 5,400 4,500 9,000 2,700 21,600 - 142,106 - - 384,000 - - 384,000 - - - - - - - - - - - - - - - - - -	\$697 \$667 \$33 \$1,427 \$0 \$27,106 \$27,106 \$27,106 \$27,106 \$27,106 \$27,106 \$27,106 \$20,067 \$13,600 \$0 \$38,280 \$0 \$38,280 \$0 \$2,2041 \$14 \$22 \$3,860 \$2,2041 \$14 \$2,2067 \$2,207
CT-1 Lighting Percentage of Watts per Squa Percent Lights Building Occup DHW A-2 A-3 A-4 A-3 A-4 A-5 Misc Plug Load w/sc Building Occup Printing/Copyin	Fan Pan Heater Pan Heater Subtotal Annual Electrical Usage are Foot On at any one time ancy % Subtotal 40 Gal 2 Element 30 Gal 2 Element 20 Gal 1 Element 20 Gal 1 Element Subtotal aft n ancy % g Equipment Controls Air Compressor Printer Air Compressor Printer Air Compressor	100%		20.00	14.6 7.0 36.1 - - 6.0 5.0 10.0 3.0 24.0 24.0 24.0	500 50 4,472 900 900 900 900 900 900 900 900 1,500 1,501	- 7,278 350 14,906 - 283,235 - 283,235 - 283,235 - 283,235 - 384,000 2,700 21,600 - 142,106 - - 384,000 - - 384,000 - - 384,000 - - 384,000 - -	\$697 \$697 \$33 \$1,427 \$0 \$27,106 \$27,106 \$27,106 \$517 \$431 \$258 \$2,067 \$13,600 \$0 \$0 \$38,200 \$0 \$38,200 \$0 \$42 \$3,860 \$0 \$2,91
CT-1 Lighting Percentage of Watts per Squa Percent Lights Building Occup DHW A-2 A-3 A-4 A-5 Misc Plug Load w/sc Avg Load % Oc Building Occup Printing/Copying	Fan Pan Heater Pan Heater Subtotal Annual Electrical Usage are Foot On at any one time ancy % Subtotal 40 Gal 2 Element 30 Gal 2 Element 30 Gal 2 Element 20 Gal 1 Element 20 Gal 1 Element git n ancy % g Equipment Controls Air Compressor Printer Air Compressor Air Dryer (Dominick-Hunter)	100%		20.00	14.6 7.0 36.1 - - 6.0 5.0 10.0 3.0 24.0 24.0 24.0 24.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1	500 50 4,472 900 900 900 900 900 900 900 900 1,500 1,501	7,278 7,278 350 14,906 - - 283,235 - - 283,235 - - 283,235 - - 283,235 - - 5,400 4,500 9,000 2,700 21,600 - 142,106 - - 384,000 - - 384,000 - - - - - - - - - - - - - - - - - -	\$697 \$697 \$33 \$1,427 \$0 \$27,106 \$27,106 \$27,106 \$27,106 \$27,106 \$27,106 \$27,106 \$2,2087 \$13,600 \$0 \$38,260 \$0 \$38,260 \$0 \$33,860 \$2,2091 \$12,100 \$2,2091 \$2,100 \$2,2091 \$2,100 \$2,2091 \$2,100 \$2,2091 \$2,100 \$2,2091 \$2,100 \$2,0000 \$2,00000 \$2,00000 \$2,00000 \$2,0000000000

Existing Operating Characteristics

Existing Equipment Annual Operating Hours Annual Operating Hours =					
Day of Week	Run Hours				
	(HVAC				
	Equipment)				
Monday	24 hrs/day				
Tuesday	24 hrs/day				
Wednesday	24 hrs/day				
Thursday	24 hrs/day				
Friday	24 hrs/day				
Saturday	24 hrs/day				
Sunday	24 hrs/day				
Holiday	24 hrs/day				

Existing Heating/Cooling Operating Set Point Temperatures						
Day of Week	Office Space	Office Space				
•	Occupied	Unoccupied				
	Degree F	Degree F				
	(Heating/Cooling)	(Heating/Cooling)				
Monday	68 / 72	68 / 72				
Tuesday	68 / 72	68 / 72				
Wednesday	68 / 72	68 / 72				
Thursday	68 / 72	68 / 72				
Friday	68 / 72	68 / 72				
Saturday	68 / 72	68 / 72				
Sunday	68 / 72	68 / 72				
Holiday	68 / 72	68 / 72				

4.0 PROPOSED SCOPE OF WORK

4.1 Scope of Work

The following is a detailed description of each Utility Conservation Measure (UCM) that is being recommended as part of this proposal.

UCM-1 Lighting and Control Upgrades					
Overview of Current Situation					
 The current lighting systems utilize a combination of fixture types including: 4' T8 32 watt fluorescent 4' & 8' T12 HO fluorescent fixtures (printing area) Mercury Vapor lamps 2 Lamp F32 T8 U-Tube Lamps, NBF Ballast 					
Recommendations					
 Retrofit the existing 4' & 8' T12 HO fixtures with T8, 28 watt lamps, reflectors and HBF ballasts. Retrofit existing 4' T8, 32 watt fixtures with T8, 28 watt lamps Retrofit existing 2 Lamp F32 T8 U-Tube Lamps with Troffer Kit with Reflector 2' w 2 F17 17 watt Lamp NBF Replace exiting interior mercury vapor lamps with CFL Install occupancy sensors in select areas and restrooms to turn fixtures off when the space is unoccupied. 					
Benefits (Including Occupant Health & Safety)					
 Reduces electrical energy usage Improves lamp life and reduces annual lamp replacement costs 					

UCM-2: HVAC Controls Upgrade

Overview of Current Situation

The existing controls system for the Modular Building consists of a JCI DDC front end with E/P transducers used to control pneumatic end controllers. There are also several fully pneumatic control valves still in operation on the HW distribution system. There is a requested desire by DES to completely remove any remaining pneumatic controls from the facility and replace with DDC.

Recommendations

- Replace remaining pneumatic control valves with new DDC controlled valves (located in boiler mechanical room & at unit heaters near roll-up doors).
 - (2) HW control valves located in boiler room
 - (7) HW control valves serving unit heaters at each roll-up door
 - o (7) HW control valves serving unit heaters located throughout the facility
- Replace remaining pneumatic devices with new full DDC control that includes the following
 - Up to twenty (20) pneumatic thermostats located in low bay VAV boxes.

Advantages/Benefits

- Improve operating efficiency of HVAC control system
- Solve operational issues
- Improve energy efficiency
- Improve occupant comfort

Supporting Documentation

UCM-3: Energy Based Re-Commissioning

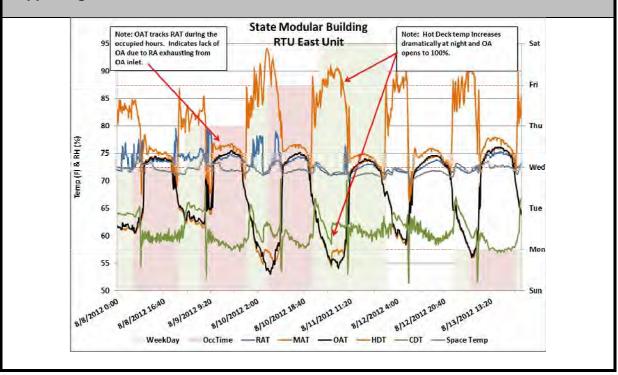
Overview of Current Situation

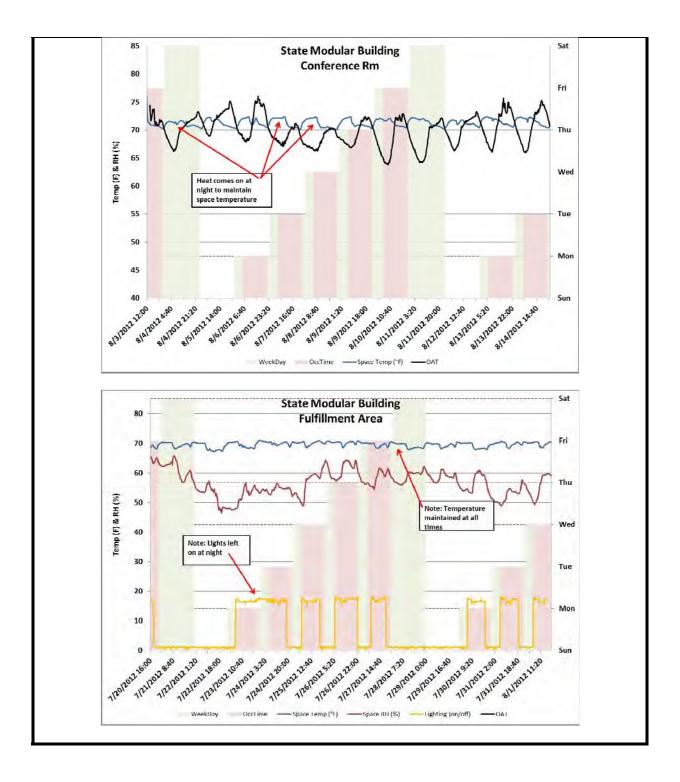
The existing HVAC system serves the space heating, cooling & ventilating requirements of the facility adequately, but could be improved from an overall efficiency standpoint. During the course of the audit the following items were noted.

- There is a lack of control over the RA/OA dampers that limits the controllability of the ventilation air supplied by the 4 rooftop DD VAV units. This is especially prevalent with the 2 RTUs serving the high bay print area. The RA fan currently supplies excess air pressure such that it over-pressurizes the MA plenum and prevents sufficient ventilation air from entering the area served by these units. This operation also has the effect of inadvertently lowering the EUI baseline due to the reduced requirement of heating/cooling the OA that would otherwise be entering the RTU for ventilation purposes.
- Trends indicate that the issues with the lack of ventilation air occurs primarily during the occupied (daytime) periods for the facility. During the unoccupied (nighttime) periods, the ventilation air increases. This is actually the opposite of preferred operation for these units. As a result of the current mode of operation, the increase in OA at night results in a decrease in the MA temperature and also a significant increase in the Hot Deck temperature (as this is required to heat the MA and maintain the facility setpoint). During the daytime (when the RA over-pressurizes the MA plenum) the MA becomes the same temperature as the RA (~72F).
- In certain areas (low bay copy center, etc) there are some thermostats that control 2 DD boxes.
- The high bay print shop often leaves the rollup loading dock door open throughout the day. This may be a result of odors indoors due to poor IAQ and makes humidity/temperature control difficult.
- The humidity control has been upgrades from a central steam system to stand alone ultrasonic humidity controllers located on columns throughout the print shop.

Recommendations

Implement a Re-commissioning effort for the facility HVAC system. Targeted improvements would include:


- Efficient modification of control sequencing issues (as applicable).
- Optimization of the RTUs, Heating System, Cooling System & Unit Heaters.
- Modify control sequencing on RTU's to improve ventilation air control. This could help with economizer efficiency and odor control in the print shop.
- Control DHW pump to turn unit off when the facility in unoccupied.
- Implement Optimum Start/Stop schedule for all systems.
- Optimize unit heater operating sequence at dock doors to prevent unnecessary operation.
- Reduce ventilation air during typically unoccupied periods to reduce nighttime heating requirements.
- Pre & Post Testing and Air Balancing (TAB).


Advantages/Benefits

- Improve operating efficiency of HVAC control system
- Solve operational issues
- Improve energy efficiency
- Improve occupant comfort

(Note: The proposed modification to the RTU control that will result in improved ventilation to the space will also result in an increase in the heating/cooling required to condition this increase in outside air. As a result, a baseline modification to the energy use baseline is being proposed.)

Supporting Documentation

4.2 Project Notations/Clarifications/Exclusions

- 1. Adequate space will be provided for the staging of materials.
- 2. Owner shall provide access as required per the coordinated schedule.

- 3. This project does not include any hazardous material identification, material handling, removal and disposal, which may be found during construction of this project.
- 4. This project does not include any asbestos testing or abatement.
- 5. This project does not allow for cost associated with working in hazardous or confined spaces.
- 6. This project does not include hazardous material identification, material handling or removal & disposal that may be found during construction. This includes mold remediation.
- 7. This project does not include any upgrades to the existing electrical system due to load or code requirements at facility.
- 8. This project does not include any upgrades to the existing fire protection system.
- 9. This proposal does not include the repair or replacement of existing damaged lighting fixtures, hardware and lenses/fixture enclosures.
- 10. This project does not include any costs for temporary construction utilities other than temporary heating.
- 11. This project does not include any costs for structural upgrades.
- 12. This project excludes architectural sheet metal
- 13. This project excludes sound consultant or acoustical engineering
- 14. All work as proposed is expected to be done during normal working hours.
- 15. Boiler Replacement and Upgrade assumes that there are no unforeseen issues with the existing vertical chase when installing the proposed new, stainless steel exhaust stack. There are sections of this chase that were not accessible during the development of this IAG.

4.3 Conservation Measures Not Included in Current Proposal

- 1. Upgrade HW Boiler System:
 - The existing HW boilers (2) are standard efficiency boilers and are nearing the end of their useful life.
 - The HW distribution piping must be maintained at a constant temperature at all times to prevent leaks that occur at gaskets/joints throughout the facility. The requirement to maintain temperature 24/7 causes the system to be extremely inefficient.
 - The HW piping located within the boiler room is extremely complex, making it difficult to efficiently control HW distribution efficiently.
 - The pumping system is constant volume.

UMC recommends replacing the existing boilers and upgrading the piping system throughout the facility, improving the piping distribution/layout within the boiler room and upgrading the pumping distribution system to variable volume. If this ECM were incorporated with the boiler replacement being recommended at the Records Center, there may be an opportunity to combine the two separate systems into one. This would reduce the initial capital cost and the ongoing operations/maintenance costs.

- 2. Replace the four existing rooftop units:
 - The existing RTUs are well past there useful life.
 - The DD/VAV system currently serving this facility is inefficient for this type of operation.

UMC recommends redesigning the existing HVAC air site system and replacing the DD rooftop units with more a more efficient system for this facility.

- 3. Implement water conservation upgrades throughout the facility
- 4. Install VFD on cooling tower fan motor
- 5. Review opportunities for improving weatherization around loading dock doors.

5.0 PROJECT FINANCIALS

This section provides an overview of the financial impact provided through implementation of this program. We have attempted to convey this information in a manner that identifies the costs, savings, fees, rates and structures along with a cash flow analysis.

5.1 Project Cost Structure

For development and performance of the Work described in this proposal, the Washington State Department of Enterprise Services shall pay to University Mechanical Contactors, Inc. the Contract Sum of \$375,392 - (excluding estimated WA State Sales Tax, contingency and, estimated WA State GA Project Management Fees). The following table outlines all of these costs, including UMC's fees and compensation.

	CATEGORY		COST (\$)	% OF CONSTRUCTION COST		
CONSTRUCTION COST (MTRL & LBR)		\$	276,430			
	PERFORMANCE & PAYMENT BOND	\$	4,146	1.5%		
	PROJECT SUPERVISION (ON-SITE)		-			
	Subtotal	\$	280,576			
PROJEC	T DEVELOPMENT					
	INVESTMENT GRADE AUDIT		10,875			
	VAV BOX AUDIT	\$	-			
	Subtotal	\$	10,875			
PROJEC	T IMPLEMENTATION					
	MECH DESIGN (CONSTRUCTION DOCUMENTS)	\$	13,215	7.0%		
	LIGHTING DESIGN	\$	4,383	5.0%		
	PROJECT/CONSTRUCTION MANAGEMENT	\$	16,586	6.0%		
	Subtotal	\$	34,183			
PERFOR	MANCE MEASUREMENT & VERIFICATION					
	MEASURMENT & VERIFICATION (YRS 2 & 3)		excluded			
	Subtotal	\$	-			
OTHER F	PROJECT COSTS					
	OVERHEAD		27,643	10.0%		
	PROFIT	\$	22,114	8.0%		
	Subtotal	\$	49,757			
TOTAL P	PROJECT COST - (EXCLUDING TAX)	\$	375,392			
CONSTR	RUCTION CONTINGENCY	\$	20,732			
SUBTOT	AL (WITH CONTINGENCY)	\$	396,124			
CONSTR	CONSTRUCTION ALLOWANCE FOR B&G					
WA STAT	E GA PROJECT MANAGEMENT FEE	\$	-			
WA STAT	E GA M&V FEE (YEARS 2 & 3)	\$	-			
	ESTIMATED TAX (@ 8.7%)		32,659			
SUBTOTAL (WITH CONTINGENCY)			428,783			
Notes:						
	Lighting design fee is % of lighting construction cost only					
	Project Management, bond and O&P fees are % of total construction cos					
	Estimated Tax applies to Total Project Cost (excluding	g co	ntingency)			

5.2 Project Cash Flow Analysis

The following table provides a sample cash flow analysis for this project.

State M	lodular B	uildina						Proi	ec	ted Ca	ash	Flow	Ar	alvsis
Project Data		3					Loar	n Data						
	<u>.</u> Iementation C	ost*	\$	375,392				est Rate	e (ai	nnual)				2.0%
Sales Tax			\$	32,659				Period						1
	pital Contribut	ion	\$	-				nents p		'ear				1
	tives, Rebates		\$	13,500				I Interes					\$	49.565
		to be Financed		394,551	-		Tota	i intere.	JUIG	uru			Ψ	10,000
Amount Fina		to be i maneca	\$	394,551										
Amount i ma			φ	334,331			Feca	lation R	ato	e				
	pport Services	-						y Escala						2.0%
ongoing Su	ppon Service:	5								st Escalat	ion I	Pata		2.0%
Itility Savin	gs (annual)		\$	16,916			Oper	auonai	00.			late		2.0,
	Savings (ann	ual)	\$	1,500			*excli	udes conti	naen	icv cost				
operational	ou thigo (unit		Ψ	1,000			CAOIC		ligen	09 0001				
		Project Savings	;				Proje	ct Costs	\$			Cash	flov	/
Varia	L MARIA -		1	Duciest	Princ	ipal &		going	1			must black	Cu	mulative
Year	Utility	Operational		Project		erest		pport		rogram	An	nual Net		Net
0	\$-	\$-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
1	\$ 16,916	\$ 1,500	\$	18,416		37,010)		-	\$	(37,010)		(18,594)	\$	(18,594
2	\$ 17,254		\$	18,784		37,010)		-	\$	(37,010)		(18,225)	\$	(36,81
3	\$ 17,599	. ,	\$	19,160		37,010)		-	\$	(37,010)		(17,850)	\$	(54,66
4	\$ 17,951		\$	19,543		37,010)		-	\$	(37,010)		(17,466)	\$	(72,13
5	\$ 18,310		\$	19,934		37,010)	•	-	\$	(37,010)		(17,076)	•	(89,21
6	\$ 18,677	. ,	\$	20,333		37,010)		-	\$	(37,010)		(16,677)	\$	(105,88
7	\$ 19,050	. ,	\$	20,739		37,010)		-	\$	(37,010)		(16,270)	•	(122,15
8	\$ 19,431	. ,	\$	21,154		37,010)		-	\$	(37,010)		(15,855)		(122,13
9	\$ 19,820		\$	21,577	· ·	37,010)		-	\$	(37,010)		(15,432)		(153,44
10	\$ 20,216		\$	22,009	· ·	37,010)			\$	(37,010)		(15,001)		(168,44
11	\$ 20,621	. ,	\$	22,449	· ·	37,010)		-	\$	(37,010)		(14,561)		(183,00
12	\$ 21,033	. ,	\$	22,898		37,010)		-	\$	(37,010)		(14,112)		(197,11
13	\$ 21,454	• ,	\$	23,356	\$	-	\$	-	\$	-	\$	23,356	\$	(173,76
14	\$ 21,883	· · · · · · · · · · · · · · · · · · ·	\$	23,823	\$	-	\$	-	\$	-	\$	23,823	\$	(149,94
15	\$ 22,320	. ,	\$	24,300	\$	-	\$		\$	-	\$	24,300	\$	(125,64
16	\$ 22,767		\$	24,786	\$		\$		\$	-	\$	24,786	\$	(100,85
17	\$ 23,222		\$	25,281	\$	-	\$		\$	-	\$	25,281	\$	(75,57
18	\$ 23,686	. ,	\$	25,787	\$	-	\$		\$	-	\$	25,787	\$	(49,78
19	\$ 24,160	. ,	\$	26,303	\$	-	\$	-	\$	-	\$	26,303	\$	(23,48
20	\$ 24,643	. ,	\$	26,829	\$	-	\$		\$	-	\$	26,829	\$	3,34
\$50,000 \$- \$(50,000 \$(100,000 \$(150,000) - 0 - 1) - 0 - 1	2 - 3 - 4 -	5	Project (Cumu	lative	e Savi			13	14 1	5-1	6 17		19 20
\$(200,000 \$(250,000														
						Yea	ır							

This cash flow analysis has been estimated based on the best information available at this time. The variables (taxes, interest rate, utility incentive, etc) are subject to change and will be re-evaluated at the time of proposal acceptance & contract completion.

5.3 Investment Summary

Investment Grade Audit (IGA)

The Cost for the IGA is per Contract Agreement No. 20101-004 A (1) between the WA State Department of Enterprise Services and University Mechanical Contractors

Labor and Materials

Details of the Scope of Work associated with the Labor and Material Costs are provided in the Section 4.0.

Construction Contingency

Construction Contingency consists of three parts (1) Latent Conditions, (2) Owner Directed Contingency and (3) Design Contingency.

- 1) Latent Conditions Contingency is an allowance provided within the contract on the assumption that latent or unknown conditions do exist related to existing systems, facilities or the facility sites. The discovery of these latent conditions could not have been reasonably known prior to construction. Furthermore, the owner has disclosed all adverse conditions that are known or could be reasonably known prior to construction. These conditions may include, but are not limited to: defects, malfunctions or obsolescence in systems being modified or in supporting systems; systems and conditions required to be upgraded to meet current or new building or safety codes; defective structures; discovery of hazardous materials including asbestos; buried utilities or underground obstructions; etc. In addition, UMC reserves the right to use the contingency to fund unforeseen cost-to-capital costs. Such conditions when uncovered shall be dealt with in the course of the project and the project responses to the unknown conditions shall be treated as Change Orders.
- 2) Owner Contingency is an allowance to accommodate adjustments to scope directed by the Owner through change orders as outlined below:
 - a) Change Orders for Latent Conditions and for Owner Directed Changes requiring price adjustments, if any, shall be funded first from the Construction Contingency Allowance less the Design Contingency part to the extent of the available allowance budget and then from additional funds added to the Contract Price targeted to the Construction Contingency Allowance through the Change Order process.

- b) In addition, such changes may delay the Contract Schedule or contiguous tasks or both. The contractor shall be entitled to equitable adjustments to the schedule. Such schedule adjustments and the resultant price of such adjustments shall be included in the Change Order.
- 3) Design Contingency Allowance is used to provide small project adjustments to contract costs due to minor errors, happenstance or minor circumstances. These contingency funds are separate from all other contingency funds and are accessible solely by change order.
- 4) Increased mobilization cost associated with implementing the project in two separate phases.
- 5) Potential increases in the cost of labor & materials for the measures that will be implemented in subsequent years.

Re-commissioning Contingency

Re-commissioning Contingency is provided to allow for repair/replacement of control & operational issues identified during the re-commissioning process. This contingency is wholly Owner Directed.

Mechanical, Electrical and Plumbing Design Costs:

The following items and tasks are included in the fee:

- ✓ Conduct Design Analysis
- ✓ Evaluate Design Alternatives
- ✓ General Project Engineering
- ✓ Preliminary and Final design submittal and review
- ✓ Design documentation
- ✓ Review and selection of materials and systems

Construction Management / Administration:

The following items and tasks are included in the construction management / administration fee:

- ✓ General Quality Oversight
- ✓ Project Progress Reports
- ✓ Permitting Process
- ✓ Coordination with civic, county and/or federal code officials
- ✓ Subcontractor Contract Development
- ✓ Construction Administration
- ✓ Coordination with Client
- ✓ Project Accounting and Invoicing
- ✓ Commissioning Co-ordination
- ✓ Project Logs and Records
- ✓ MEP Redlines and As-Built Development
- ✓ Project Close-Out
- ✓ Release of Purchase Orders

- ✓ Site General Conditions
- ✓ Start-up of Systems
- ✓ Performance Testing
- Training Administration/Coordination with factory representatives
- ✓ Onsite Subcontractor/Discipline Coordination
- ✓ Quality Assurance/Quality Control
- ✓ Inventory of materials and equipment received
- ✓ Site Safety Administration
- ✓ Punch list Development/Resolution

The following table summarizes the total investment summary per UCM.

Utility Con	Utility Conservation & Facility Upgrade Measures		Resulting Annual Savings ⁽¹⁾		Estimated Operational Savings		Potential Utility Rebate ⁽²⁾		aranteed Project Cost	l Simple Payback
			\$		\$		\$		\$	Yrs
		\$	-	\$	-	\$	-	\$	-	
UCM1: Lighting & Lighting Control	ils Upgrades	\$	6,043	\$	1,500	\$	13,500	\$	87,650	9.8
		\$	-	\$ \$	-	\$ \$	-	\$ \$	-	
UCM2: HVAC Controls Upgrade		۰ ۶	1,156	۶ ۶		э \$		ֆ Տ	- 101,332	87.7
Com2. The Controls opgilde		\$	-	\$	-	\$	-	\$	-	01.1
		\$		\$	-	\$	-	\$	-	
UCM3: Energy Based Re-Commi	ssioning	\$	9,717	\$	-	\$	-	\$	87,448	9.0
		\$	-	\$	-	\$	-	\$	-	
Subtotal		\$	16,916	\$	1,500	\$	13,500	\$	276,430	14.3
								\$	-	
	ond							\$	4,146	
	roject Supervision (on-site)	_						\$	-	
Subtotal - Construction		\$	16,916	\$	1,500	\$	13,500	\$	280,576	14.5
	dditional Project Development									
A	and Implementation Costs									
<u> </u>	vestment Grade Audit							\$	10,875	
	echanical Design							э \$	13,215	
	ghting Design							\$	4,383	
	roject Management							\$	16,586	
	&V (Years 2 & 3)							Ψ	TBD	
	verhead							\$	27,643	
	rofit							\$	22,114	
								Ť	22,111	
Total Construction	Cost - (All Measures / Excluding Tax)	\$	16,916	\$	1,500	\$	13,500	\$	375,392	19.7
Construction Contingency								\$	20,732	
								\$	-	
Subtotal								\$	396,124	
Construction Allowance for E										
WA State GA Project Manag										
WA State GA M&V Fee (Yea	rs 2 & 3 total)									
Estimated Tax (@ 8.7%)								\$	32,659	
Total Installed Cost	(Including Contingency)	_		1		i		\$	428,783	22.5
	\$) are based on current utility rate schedule									
(2) Rebates & Incentives a	are estimated, but not guaranteed									
(3) Estimated Tax applies	to Total Constuction Cost, excluding contingency									

UCM Summary

6.0 MEASUREMENT & VERIFICATION

6.1 Summary of Total Guaranteed Savings

The tables in this section illustrate the total savings in 2012 dollars and extended over a 20 year life span. The actual savings guarantee will be in units of energy (kwh, demand kw, and gallons water). The dollars shown in these tables are calculated by applying the current rates (as shown in Section 6) to the guaranteed units of energy saved. An annual escalation rate has been applied equal to 2% for utility rates and 2% for operational costs (this is for projecting estimated annual savings only - escalation is not included in any guarantee).

		Annual	Cummulative
	Annual Utility	Operational	Project
Year	Savings	Savings	Savings
Construction			
1	\$16,916	\$1,500	\$18,417
2	\$17,255	\$1,530	\$37,202
3	\$17,600	\$1,561	\$56,363
4	\$17,952	\$1,592	\$75,907
5	\$18,311	\$1,624	\$95,842
6	\$18,677	\$1,656	\$116,175
7	\$19,051	\$1,690	\$136,916
8	\$19,432	\$1,723	\$158,071
9	\$19,820	\$1,758	\$179,649
10	\$20,217	\$1,793	\$201,659
11	\$20,621	\$1,829	\$224,109
12	\$21,034	\$1,865	\$247,008
13	\$21,454	\$1,903	\$270,365
14	\$21,883	\$1,941	\$294,189
15	\$22,321	\$1,980	\$318,489
16	\$22,767	\$2,019	\$343,276
17	\$23,223	\$2,060	\$368,558
18	\$23,687	\$2,101	\$394,346
19	\$24,161	\$2,143	\$420,650
20	\$24,644	\$2,186	\$447,479

The following Table summarizes the first year savings of the Total Guaranteed Savings (Total Guaranteed Savings Summary) in Guarantee Type categories. <u>All</u> guarantees are based on units of energy (not dollars).

Proposed M&V Type							
	Measurement & Verification Option Proposed						
Energy Conservation Measure	Option A		Option C	Option D			
	Partially Measured Retrofit Isolation	Retrofit Isolation	Whole Facility	Calibrated Simulation			
UCM 1: Lighting & Lighting Controls Upgrades UCM 2: HVAC Controls Upgrade	х			х			
UCM 3: Energy Based Re- Commissioning	х						

The following Table illustrates the total guaranteed savings in units of energy.

Utility Conservation & Facility Upgrade Measures		Guaranteed Energy/Utility Savings					
	Ele kW/yr	ctric kWh/yr	Natural Gas therms	Water / Usage gal/yr	/ Sewer Sewer gal/yr		
	-	-	-	-	-		
UCM 1: Lighting & Lighting Controls Upgrades	216	61,200	-	-	-		
	-	-	-	-	-		
	-	-	-	-	-		
UCM 2: HVAC Controls Upgrade	-	-	1,100	-	-		
	-	-	-	-	-		
	-	-	-	-	-		
UCM 3: Energy Based Re-Commissioning	-	22,853	7,704	-	-		
	-	-	-	-	-		
Subtotal	216	84,053	8,803	-	-		

6.2 Energy Guarantee

UMC is prepared to guarantee the performance of the installed measures to reduce energy consumption. The table shown in section 6.1 provides the specific energy guaranteed consumption savings for each utility conservation measure. Savings calculations are based upon both baseline operating characteristics and proposed operation criteria. These target energy savings are dependent upon the stipulated conditions as defined in the individual UCM M&V plans.

The measurement & verification plan provides the specific on-going reporting tasks that will be performed in order to verify that the UCMs are performing as specified. The intent is to measure and verify key indicators on which the energy savings are based. <u>Once these key indicators are verified to be in accordance with the proposed criteria, the savings due to the performance of the equipment or measure shall be deemed as met.</u> The proposed measurements for each UCM are defined in Section 6.3.

<u>Baseline</u>: The "baseline" refers to the current operating characteristics of the facility, system or equipment prior to the implementation of the conservation measures identified in this audit. All parties acknowledge that the baseline characteristics as identified in this audit and as associated with specific measures have been determined based on the following:

- Actual operating information gathered during this audit through field observation, site measurements, occupant interviews, trending or owner operational log books. In certain situations, this information has been used to determine stipulated factors such as occupancy schedules, typical equipment operating hours, operational expenditures, light fixture burn-hours, etc.
- Owner provided information.
- In certain instances, a modified baseline may have been developed and discussed with the owner. A modified baseline is instituted when the preretrofit conditions do not reflect a system that is operating per current code or per owner's desired normally anticipated operating conditions.

<u>Proposed</u>: The proposed operating criteria, including system performance and operational expenditures, which were used for savings calculations are provided in Section 6 of this IGA. Systems must be operated per the proposed criteria to ensure energy cost savings are realized. UMC will provide the initial start-up and commissioning of the system to ensure that the UCMs operate per the proposed operating criteria. The Owner acknowledges responsibility to ensure that these criteria are maintained and associated energy savings are realized. Energy Savings Guarantees are predicated based upon Owner maintaining their responsibilities as provided below in "Owner Responsibilities."

6.3 Measurement and Verification Plan

Guarantee Savings Types

The IPMVP protocol includes four guarantee options to measure and verify savings: Option A – Partially Measured Retrofit Isolation, Option B – Retrofit Isolation, Option C – Whole Facility, and Option D – Calibrated Simulation. The following table describes these options in more detail.

M&V Option	How Savings Are Calculated	Typical Applications
Option A. Partially Measured Retrofit	Savings are determined by	Lighting retrofit where
Isolation	partial field measurement	power draw is
This approach is intended for Facility	of the energy use of the	measured
Improvement Measures where a one-time	system(s) to which an	periodically.
measurement for specific equipment or	ECM was applied;	Operating hours of
systems instantaneous baseline energy	separate from the energy	the lights are
use, and a one-time measurement for	use of the rest of the	assumed to be one
specific equipment or systems	facility. Measurements	half hour per day
instantaneous post-implementation energy	may be either short-term	longer than store

use can be measured. Baseline and Post energy consumption is calculated by multiplying the measured end use instantaneous capacity (i.e. – kW, Gal/hr, BTU/hr) by stipulated hours of operation for each mode of operation (i.e. – hours, week, month).	or continuous. Partial measurement means that some but not all parameter(s) may be stipulated, if the total impact of possible stipulation error(s) is not significant to the resultant savings. Careful review of ECM design and installation will ensure that stipulated values fairly represent the probable actual value. Stipulations should be shown in the M&V Plan along with analysis of the significance of the error they may introduce.	open hours.
Option B. Retrofit Isolation This approach is intended for Facility Improvement Measures where continuous periodic measurements for specific equipment or systems baseline energy use, and continuous periodic measurements for that equipment or systems post-implementation energy use can be measured.	Savings are determined by field measurement of the energy use of the systems to which the ECM was applied; separate from the energy use of the rest of the facility. Short-term or continuous measurements are taken throughout the post-retrofit period.	Application of controls to vary the load on a constant speed pump using a variable speed drive. Electricity use is measured by a kWh meter installed on the electrical supply to the pump motor. In the base year this meter is in place for a week to verify constant loading. The meter is in place throughout the post- retrofit period to track variations in energy use.
Option C. Whole Facility This approach is intended for measurements of the whole-facility where specific meter baseline energy use and measurements of whole-facility or specific meter post-implementation energy use can be measured.	Savings are determined by measuring energy use at the whole facility level. Short-term or continuous measurements are taken throughout the post-retrofit period.	Multifaceted energy management program affecting many systems in a building. Energy use is measured by the gas and electric utility meters for a twelve month base year period and throughout the post-retrofit period.
Option D. Calibrated Simulation This approach is intended for Facility Improvement Measures where the end use capacity or operational efficiency; demand, energy consumption or power level; or	Savings are determined through simulation of the energy use of components or the whole facility. Simulation routines must	Multifaceted energy management program affecting many systems in a building but where no

manufacturer's measurements, industry	be demonstrated to	base year data are
standard efficiencies or operating hours are	adequately model actual	available. Post-retrofit
known in advance, and used in a	energy performance	period energy use is
calculation or analysis method that will	measured in the facility.	measured by the
calculate the outcome.	This option usually	calibrated simulation
	requires considerable skill	using a model
	in understanding facility	(usually Excel or
	interactions and in	whole facility model
	calibrated simulation.	such as Trane Trace).
		Base year energy use
	Factors that are stipulated	is determined by
	should be shown in the	simulation using a
	M&V Plan.	model calibrated by
		the post-retrofit period
		utility data.

The following information outlines are applicable for this contract:

Measurement and Verification (M&V) methods provided under this Article:

Option A – Partially Measured Retrofit Isolation

Option B – Retrofit Isolation

Option C – Whole Facility

Option D – Calibrated Simulation

General Overview:

The purpose of the Measurement and Verification (M&V) Section is to identify the methods, measurements, procedures and tools that will be used to verify the savings for each ECM. Savings have been determined by comparing prior usage, consumption or efficiencies defined as the Baseline to the selected ECMs being implemented against the resulting post ECM implementation usage, consumption or efficiencies.

The baseline usage, consumption and equipment efficiencies associated with this facility is defined as the Contracted Baseline. The utility baseline for the facility and the baseline operating practices are defined in Section 3. The operating characteristics pertaining to specific equipment, systems and/or operating practices that have been used to determine the estimated savings associated with individual ECMs is described in the following M&V plan for each measure.

The actual guaranteed savings associated with this Program is outlined in the tables provided in Section 6.1.

UCM 1.00 – Lighting & Controls Upgrade

Proposed M&V Method – Option A: Partially Measured Retrofit Isolation

M&V Procedure

All M&V activities associated with the Project will be conducted by UMC.

An audit has been performed to determine the total number of existing fixtures at the facility, as well as identifying the type of fixture and the corresponding usage.

Pre-Installation Measurements: Measurements will be made of the energy usage of selected representative existing lighting systems for connected load prior to implementation of retrofit work. The wattages of these fixtures will be measured using a calibrated kW meter. This measurement will occur once prior to retrofit work.

Baseline Key Parameters	Quantity	Measured (Y/N)	Verification Method
Existing Annual Burn Hours (ABH _{exist})	See spreadsheet in Appendix	N	Stipulated (Estimated based on typical warehouse hours of operation and trend information)
Existing Fixture Demand (kW)	See spreadsheet in Appendix	Y	 Measure 1 circuit serving high bay 8' T12 fixtures Measure 1 circuit serving typical low bay 4' T8 32 watt fixtures
Existing Number of fixtures	See spreadsheet in Appendix	N	Stipulated (Counted during lighting audit)

Post-Installation Measurements: One-time post-retrofit energy usage measurement will be made on the same or similar fixtures as the pre-retrofit measurements. The wattages of these fixtures will be measured using a calibrated kW meter. This measurement will occur once after completion of retrofit work.

Whenever there is a discrepancy between the energy usage (kW) utilized in the energy savings calculations and that measured in the pre- and post-retrofit measurements then either more circuits will be measured, or the difference in the energy usage will be applied to all similar fixtures that were not measured.

Annual % savings associated with reduced annual burn hours due to the implementation of lighting controls will be stipulated.

Operational savings are based on material savings only (cost of labor has not been included). These operational savings take into account the reduction in lamp & ballast replacements that will be a direct result of this UCM. Operational Savings associated with this measure will be stipulated.

Proposed Parame	Quantity	Measured (Y/N)	Verification Method
Proposed Annua Hours (ABH _{propos}	See spreadsheet in Appendix	Ν	Stipulated (Estimated based on typical warehouse hours of operation and trend information)

New Fixture Demand (kW)	See spreadsheet in Appendix	Y	 Measure same high bay circuit as during pre-measurement Measure same low bay circuit as during pre-measurement
Proposed Number of fixtures	See spreadsheet in Appendix	Ν	Counted during lighting audit and confirmed during commissioning
Reduction in Annual Burn Hours due to Installation of Lighting Controls	20%	N	Stipulated
Operational Savings due to Reduced Lamp/Ballast Replacements (material savings only)	See spreadsheet in Appendix	Ν	Stipulated

End of Year One M&V: None proposed

Calculations

All calculations associated with the estimated pre & post energy usage will be made according to standard engineering practice. All savings estimates are provided in the Appendix for review.

UCM 2.00 – HVAC Controls Upgrade

Proposed M&V Method – Option D: Calibrated Simulation (all savings associated with this measure will be <u>stipulated</u>)

M&V Procedure

All M&V activities associated with the Project will be conducted by UMC.

Pre-Installation Measurements: Confirm baseline operating schedules via BAS system. The existing baseline operating characteristics of the State Modular Building HVAC have been documented in Section 3 and in the savings calculation spreadsheet provided in the appendix.

Baseline Key Parameters	Quantity	Measured (Y/N)	Verification Method
Existing HVAC system operating schedule	See Section 3 Baseline Operating Practices (all systems currently operate 8760hrs/yr)	Y	Confirmed during pre-construction monitoring through review of current BAS operating schedule - <u>stipulated</u>

Post-Installation Measurements: There will be no post-installation measurements made. All savings associated with this measure are based on an industry standard savings percentage for the type of work implemented.

Proposed Key Parameters	Quantity	Measured (Y/N)	Verification Method
Proposed HVAC system operating schedule	Same as Baseline (see Section 3)	Ν	Schedule will be confirmed during project commissioning - <u>stipulated</u>
Annual Savings associated with Facility Heating	2.0% of total baseline heating usage	Ν	Stipulated

End of Year One M&V: None Proposed.

Calculations

All calculations associated with the estimated pre & post energy usage will be made according to standard engineering practice. Following final inspection and commissioning, a verification of the original savings estimate will be performed to confirm savings based on the actual installation. Savings presented in the contract documents will be stipulated throughout the duration of the contract. All savings estimates are provided in the Appendix for review.

UCM 3.00 – Energy Based Re-Commissioning

Proposed M&V Method – Option A: Partially Measured Retrofit Isolation

M&V Procedure

All M&V activities associated with the Project will be conducted by UMC.

Pre-Installation Measurements: The existing baseline operating characteristics of the State Modular Building heating system have been documented in Section 3 and in the savings calculation spreadsheet provided in the appendix. Specific variables have been measured and documented during the IGA. These variables will be stipulated for the course of the project. There are no additional measurements that will be made.

Baseline Key Parameters	Quantity	Measured (Y/N)	Verification Method
Existing HVAC system operating schedule	See Section 3 Baseline Operating Practices	Y	Confirmed during pre-construction monitoring through review of current BAS operating schedule - <u>stipulated</u>
Average Annual RTU	S1=6,175cfm	Ν	Estimated based on 50% of Design

Airflow	S2=8,550cfm		Airflow - stipulated
Average Annual RTU Airflow	S3=19,725cfm S4=23,340cfm	Ν	Estimated based on 75% of Design Airflow - <u>stipulated</u>
% Average RTU Airflow Supplied to HD when OAT < 60F	25%	Ν	Estimated based Design Airflow - stipulated
Average % OA for RTUs S1 & S2 from 10:00pm to 10:00am	40%	Y	Calculated based on trended RA/OA/MA temperatures obtained during IGA - <u>stipulated</u>
Average % OA for RTUs S3 & S4 from 10:00pm to 10:00am	80%	Y	Calculated based on trended RA/OA/MA temperatures obtained during IGA - <u>stipulated</u>
Average Space Temperature during Heating Mode	72	Y	Trended during IGA - stipulated
Average % OA provided by RTUs from 10:00am to 10:00pm	Between 0% & 5%	Y	Estimated based on trended information obtained during IGA - <u>stipulated</u>

Post-Installation Measurements: Short term monitoring/trending (2-4 weeks) of select system operating characteristics will be implemented to confirm that the HVAC airside system is operating as anticipated. The operating characteristics to be measured will include the following.

• Monitor RAT, OAT & MAT serving three (2) RTUs to confirm OA reduction during unoccupied periods (10 minute intervals)

In addition to the short term trending of facility operating characteristics, additional M&V will consist of confirmation/documentation of system commissioning to implement all proposed operating requirements. Future savings will be calculated with the Excel spreadsheet models that have been developed to estimate energy savings (these are included in the appendix). Proposed operating schedules (if included) have been reviewed and agreed to by the owner and will be stipulated for future operation.

Proposed Key Parameters	Quantity	Measured (Y/N)	Verification Method
Proposed HVAC system operating schedule	Same as Baseline (see Section 3)	Ν	Schedule will be confirmed during project commissioning - <u>stipulated</u>
Average Annual RTU Airflow	S1=8,028cfm S2=11,115cfm S3=17,095cfm S4=20,228cfm	Ν	Estimated based on 65% of Design Airflow - <u>stipulated</u>
% Average RTU Airflow Supplied to HD when OAT	25%	N	Estimated based Design Airflow - stipulated

< 60F			
Average % OA for RTUs from 10:00pm to 10:00am	5%	Y	Confirmed via post-construction monitoring of OA, RA & MA for 2 of 4 RTUs
Average Space Temperature during Heating Mode	68	Ν	Stipulated
Annual Savings associated with RTU Fan Energy Usage	27,397 kWh (5% of total baseline SF & RF motor usage)	Ν	Stipulated
Annual Savings associated with Chiller Energy Usage	5,250 kWh (5% of total baseline chiller usage)	N	Stipulated

End of Year One M&V: None Proposed.

Calculations

All calculations associated with the estimated pre & post energy usage will be made according to standard engineering practice. Following final inspection and commissioning, a verification of the original savings estimate will be performed to confirm savings based on the actual installation. Savings presented in the contract documents will be stipulated throughout the duration of the contract. All savings estimates are provided in the Appendix for review.

6.4 Utility Rate Structure and Escalation Rates

Utility costs used for savings calculations will be based on the utility rate in effect for the predominant bill or the utility rate in effect for the corresponding period of the Baseline period, whichever is greater. The rate, in effect during the Baseline period, will be designated the floor price, and is shown below for each utility.

	Electricity	
Tariff Number or Designation:	Schedule 26 Large De	emand General Service
Utility Name:	Puget Sound Energy	
Rate Structure:	\$ 104.46	Basic Charge
Electricity	\$ 0.066949	\$ per kWh
Demand (Oct – Mar)	\$ 8.94	\$ per kW
Demand (Apr – Sep)	\$ 5.96	\$ per kW
	6%	City of Tumwater Tax
		Rate
Total Elect Rate (including Tax)	\$ 0.070966	\$ per kWh
	\$ 9.48 / \$ 6.32	\$ per kW
Blended Rate	\$ 0.0957 kWh	Average \$ per kwh ¹

1. Based on baseline load profile

	Natural Gas	
Tariff Number or Designation:	Schedule 31	
Utility Name:	Puget Sound Energy	
Rate Structure:	\$ 33.32	Basic Charge
	\$ 0.32599	Delivery Charge - \$ per
		therm
	\$ 0.60040	Cost of Gas - \$ per therm
	\$ 0.04028	Gas Conservation
		Charge - \$ per therm
	6%	City of TumwaterTax
		Rate
	\$ 1.0247	Total Gas Cost - \$ per
		therm

6.5 Applicable Codes

Federal, State, and Local codes or regulations are applicable to the use and operation of the facility. All work installed under this project will meet the requirements of the following codes:

- The International Building Code and appendices thereto pertaining to building accessibility, not including the adoption of the incorporated electrical codes, plumbing codes, fire codes or property maintenance codes other than specifically referenced subjects or sections of the International Fire Code, but including the incorporated International Residential Code; International Mechanical Code; International Fuel Gas Code; International Energy Conservation Code.
- The Washington State Energy Code
- The Uniform Mechanical Code
- The Uniform Code for Building Conservation
- The Safety Code for Elevators and Escalators (ASME/ANSI A 17-.1)
- The NEC
- The NFPA Fire Alarm Systems
- The NFPA 13 Fire Sprinkler Systems
- The Uniform Plumbing Code
- The Washington State Ventilation and Indoor Air Quality Code
- All applicable local city codes

UMC is not responsible for the code compliance of systems not installed under this project.

6.6 M&V Costs

The cost for the first 12 months of M&V reporting is included in the project implementation cost.

The owner has the option to continue M&V and associated energy guarantees for the subsequent years at the prices shown below (including a labor escalation rate of 4%). To elect this option owner shall provide written notification to UMC one month after the end of the prior period. In the event this option is not elected for a particular year, it may not be elected in subsequent years. UMC's ongoing fee for M&V for years 2 through 4 is shown below.

Year	Annual M&V Cost
1	(1)
2	\$4,600
3	\$4,784
4	\$4,975

(1) Included in project cost

6.7 M&V Reporting

UMC will provide a commissioning report to the Owner within 90 days of completion of the project.

At the completion of the 12 months of energy savings, UMC will provide the first year of reporting within 90 days of this date.

Ongoing M&V reporting beyond year one is not included as part of this proposal. The annual cost for the continued M&V is shown above and can be opted for continuation by the Owner. The savings guarantee associated with this project will only continue past year one as long as the Owner includes the continuation of M&V services as defined herein.

6.8 Owner Responsibilities

This section details the responsibilities the Owner, in connection with the management and administration of the Performance Guarantee. UMC is not responsible for increased energy or operational issues that result from items beyond

its control or in the event that the Owner fails to comply with the following requirements.

- The Owner will provide a representative at each facility to coordinate work and provide required data described below. Owner will provide access to all spaces required for pre measurement and post measurement. At the Owner's discretion, one representative will witness all pre and post measurements. UMC will provide calibration reports on all meters as required by the Owner.
- The Owner will provide UMC with accurate facility operating information, as defined below, and in the Contracted Baseline article of this Section during each Annual Period, as soon as such information becomes available to the Owner.
- Owner will provide UMC with copies of utility bills within 7 days of receipt by Owner or provide access to utility vendor information.
- Owner will provide telephone/data remote access as UMC reasonably requests. All charges related to telephone/data line installation, activation and communication services are the responsibility of the Owner.
- Owner will be responsible for notification of UMC regarding schedule changes of the air handling systems associated with this measure. Owner will be responsible for maintaining proposed schedules and setback temperatures. If, for any reason, schedules or setback temperatures must change, Owner will be responsible to make UMC aware of the change.
- Owner will maintain all proposed operating schedules as defined in this proposal and as discussed during training. UMC cannot be responsible for excess energy usage that occurs due to atypical operating hours that are the result of equipment overrides, failure to maintain vacation/holiday scheduling or changes in building use or operating characteristics beyond that as identified during the development of the IGA.
- Owner will provide equipment service and preventative maintenance to keep all equipment installed as part of this project operating efficiently. This includes all service & maintenance as defined in equipment O&M & warranty documents and as discussed during training. Equipment must be maintained in peak operating condition to provide ongoing efficient operation in a manner to meet the savings estimates set forth in this document. Unless otherwise contracted, UMC will provide no additional equipment maintenance or repairs outside of the warranty period
- Owner agrees that the existing operating schedules and equipment conditions, as provided in this IGA, are complete and correct. If, for any

reason, the Owner requires that the equipment be operated in excess of the proposed schedules, UMC will not be responsible for resulting increased energy usage.

- During the performance guarantee period, any post-retrofit changes made by the Owner that may affect the baseline data (i.e., new construction, additional electrical loads, manual control of automatic devices, etc.) shall be reported to UMC so that adjustments can be made to reflect the changes and proper adjustments to the savings guarantees can be made.
- <u>UMC will provide an operations and maintenance manual.</u> Upkeep of the equipment installed as part of this project is the responsibility of the Owner's maintenance personnel. Any loss of efficiency that occurs to the installed equipment caused by a lack of ongoing maintenance or upkeep shall be taken into account and appropriate impact to annual savings adjusted.
- Owner must make every effort to make sure that all appropriate personnel attend equipment/system training provide by UMC during the implementation of this project. These training sessions will be scheduled with the Owner to make sure they are held during a period when appropriate personnel can attend.

Section 6.9 On-Going Space Operating Conditions

The following section provides the space conditions that Owner must maintain to ensure the comfort of the building occupants. These conditions also provide the basis upon which all energy savings calculations have been made. Deviations beyond these conditions that are made at the discretion of the Owner could negatively affect the ongoing savings performance of this project.

HVAC Operating Criteria: Heating, ventilating, and air conditioning (HVAC) systems provided as a part of this project will provide space conditions in accordance with the Standards of Comfort described below. This standard will pertain only to buildings and areas of buildings that are directly affected by measures implemented in this project and under which this HVAC equipment has direct control over space comfort conditions. HVAC comfort conditions cannot be guaranteed when operable windows or doors are open.

Space Conditions:

Occupied:

- Office:
 - Heating Set Point 68 degrees F
 - Cooling Set Point 78 degrees F (where mechanical cooling systems are employed)
- Warehouse:

- Heating Set Point 65 degrees F
- Cooling Set Point 70 degrees F (where mechanical cooling systems are employed)
- 30% 50% RH (as capable of being maintained with current HVAC system)

Unoccupied:

- Office:
 - Minimum 55 degrees F
 - Maximum 90 degrees F (where mechanical cooling systems are employed)
- Warehouse:
 - Minimum 65 degrees F
 - Maximum 70 degrees F (where mechanical cooling systems are employed)
 - 30% 50% RH (as capable of being maintained with current HVAC system)

Minimum outside air per occupant:

• In accordance with ANSI/ASHRAE Standard 62.1-2007, standards and the International Mechanical Code as adopted by the Washington State Building Code Council effective July 1 2010.

HVAC Equipment Operating Hours:

• The operating schedules for the equipment installed as a part of this project will remain the same as the original baseline operating schedule unless schedule changes have been proposed and implemented as a part of this project.

7.0 IMPLEMENTATION PLAN

7.1 Project Schedule

A preliminary project schedule for the State Modular Building ESPC project milestones is shown below.

D		Task Name	Duration	Start	Finish	Deerer	 1.		 					- 1-		A						lum		_
	0					Decemi B M		inua		Febr B		E	Mare	M	E	Apr		E	Ma	M	E	Jun	M	F
1		Notice to Proceed	0 days	Tue 1/1/13	Tue 1/1/13		<u>ج</u>		-	0		-	0		-									
2	111	Kick-Off Meeting	1 day	Thu 1/3/13	Thu 1/3/13		5	Ś																
3		Engineering Begins	20 days	Fri 1/4/13	Thu 1/31/13		5			n -														
4	111	Submittals	5 days	Fri 2/1/13	Thu 2/7/13				- 9	ę														
5		Site Mobilization	2 days	Fri 2/8/13	Mon 2/11/13					90	h													
6		Demolition and Prep	10 days	Tue 2/12/13	Mon 2/25/13					- 9	Ć	┏	1											
7		Installation	65 days	Tue 2/26/13	Mon 5/27/13	1							_	_	_	-	_	_	-	_				
8		UCM-1 Lighting & Controls Upgrade	15 days	Tue 2/26/13	Mon 3/18/13	1						*												
9		UCM-2 Controsl Upgrades	20 days	Tue 2/26/13	Mon 3/25/13							40			D									
10		UCM-3 Energy Based RCx	45 days	Tue 3/26/13	Mon 5/27/13										R						<u> </u>			
11		Substantial Completion	0 days	Mon 5/27/13	Mon 5/27/13																90	5/2	7	
12		Punch List	3 days	Tue 5/28/13	Thu 5/30/13																•	ĥ		
13		Post Measurements Complete	3 days	Fri 5/31/13	Tue 6/4/13																- 9	ŏ,		
14		Project Complete	0 days	Tue 6/4/13	Tue 6/4/13	1															. (6/4	
15	111	O&M and M&V Reports	15 days	Wed 6/5/13	Tue 6/25/13	1																\		

8.0 APPENDIX

ι	JC	M 1.0 Lighting & Light	ing	g Co	ontrols Upgra	de	s - Ene	erg	jy Sa	avings E	Stimat	tes
	roject	State Modular Building	ļ	Facility Contact	Scott Locke UMC				Auditor(s)	Mike Campbell	NWE Contact Phone	(509) 680-3963
	Name			Phone	(206) 295-3214	Ext.			Audit Date		Office Phone #	(425) 806-9200
A	ddress	7580 New Market St SW		Building					Last	8/15/12	Office Fax #	(425) 806-7455

Addre		7580 New Market St SW				Building Contact							Last Revised	8	/15/12	Office	Fax #	(425) 806-7455
Cit	у	Tumwater				Phone			Ext.				Utility	Puget S	ound Energy	kWh Rate		Demand Rate
Sta	te	Washington Tax	x Rate	0.00	%	Facility Type			Heat				Lamp Replace			Ballast Replace		Second Tier Start Level 0.0000
Cour	nty	Thurston Zip	Code	985	01	Sq. Feet	•		AC				Group Spot			PCB/ Percent		Maint. Rate
ECM	-	Location		Fixture Qty –	Fixture ID	Existin	ng/Proposed Fixture Descri	iption - Wat	p Fixture - Wat -	Fixture Heia -	Hours/ Da -	Days/ Wee –	FC	Sensor Qty -	Sensor / Power Pac -	Energy Save	Sensor Heigí -	Survey Notes
	E	Entry / Reception	_	3	EFMV100	Existin	g Fixture Mercury Vapor 10		1		9	5						
1	Р	Entry / Reception		3	CFLR32	Retrofit	Lamp t HID with 32 watt CFL Lam Ballast		32		9	5						use 841 lamps unless specified
2	E	Entry / Reception		12	ECFL32	E	Existing 32 watt CFL Lamp	32	32		9	5						leave as is
2	P	Entry / Reception		12	ECFL32	-	Existing 32 watt CFL Lamp		32		9	5						16476 45 15
3	E	Entry / Reception		2	ET4232N		ing Troffer T8 4' w 2 F32 32 Lamp, NBF Ballast nd Ballast Retrofit w 2 F32 3				9	5						3L ballast. existing has one lamp removed
	Р	Entry / Reception		2	LB228L	Lamp Ai	Lamp, LBF Ballast	28 watt 28	42		9	5						
4	E	Entry / Reception		1	ET2217N	Existing	Troffer 2x2 2L F17 T8, NBF		33		9	5						relamp for color
	Р	Entry / Reception		1	RL217N		telamp with 2 F17 T8 Lamps		33		9	5						
5	E	Conf 115		7	ET4232N		ing Troffer T8 4' w 2 F32 32 Lamp, NBF Ballast	32	58		9	5						
	Р	Conf 115		7	LB228N	Lamp Ar	nd Ballast Retrofit w 2 F32 : Lamp, NBF Ballast	28 watt 28	48		9	5						
6	E	101 Office		7	ET4332N		ing Troffer T8 4' w 3 F32 32 Lamp, NBF Ballast	32	85		9	5						
	Р	101 Office		7	TK4228N	Troffer K	it with Reflector 4' w 2 F32 Lamp, NBF Ballast	28 watt 28	48		9	5						
7	E	Shop Area - Under Mezz		34	ES8432N	Existing	Strip T8 8' w 4 F32 32 watt NBF Ballast	t Lamp, 32	112		16	5	35					850. lots of end caps missing. 11 burned ou
<i>'</i>	Р	Shop Area - Under Mezz		34	LB428N	Lamp Ar	nd Ballast Retrofit w 4 F32 Lamp, NBF Ballast	28 watt 28	96		16	5						lamps
8	E	Production Manager Office		5	EW 4332N		Wrap T8 4' w 3 F32 32 wat NBF Ballast	52	85		9	5		1.00	WSDPDT2PI	20%		
	Р	Production Manager Office		5	WK4228NP		Kit with Reflector 4' 2L F32 att Lamps, PRS NBF Ballas		48		9	5				20%		
9	E	Closet		1	EW 4232N	Existing	Wrap T8 4' w 2 F32 32 wat NBF Ballast	tt Lamp, 32	58		2	5						
9	Р	Closet		1	LB228L	Lamp Ar	nd Ballast Retrofit w 2 F32 Lamp, LBF Ballast	28 watt 28	42		2	5						
	E	Mezzanine		29	ES8232N	Existing	Strip T8 8' w 2 F32 32 watt NBF Ballast	t Lamp, 32	58		16	5						
10	Р	Mezzanine		29	LB228N	Lamp Ar	nd Ballast Retrofit w 2 F32 : Lamp, NBF Ballast	28 watt 28	48		16	5						850
	E	Rest of Production Area		152	ES8432N	Existing	Strip T8 8' w 4 F32 32 watt NBF Ballast	t Lamp, 32	112	25.0 ft	16	5						
11	Р	Rest of Production Area		152	LB428N	Lamp Ar	nd Ballast Retrofit w 4 F32 : Lamp, NBF Ballast	28 watt 28	96	25.0 ft	16	5						217 lamps burned out. 850
	E	Rest of Production Area - Over Mach	nine	5	ES8432N	Existing	Strip T8 8' w 4 F32 32 watt NBF Ballast	t Lamp, 32	112	14.0 ft	16	5						
12	Р	Rest of Production Area - Over Mach	nine	5	LB428H	Lamp Ar	nd Ballast Retrofit w 4 F32 Lamp, HBF Ballast	28 watt 28	130	14.0 ft	16	5						
	E	Rest of Production Area - Over Mach	nine	4	ET4332N	Exist	ing Troffer T8 4' w 3 F32 32 Lamp, NBF Ballast	watt 32	85		16	5						
13	Р	Rest of Production Area - Over Mach	nine	4	TK4228H	Troffer K	it with Reflector 4' w 2 F32 Lamp, HBF Ballast	28 watt 28	65		16	5						850
14	E	Rest of Production Area - Over Mach	nine	8	ET4232N		ing Troffer T8 4' w 2 F32 32 Lamp, NBF Ballast	32	58		16	5						
	Р	Rest of Production Area - Over Mach	nine	8	LB228H	Lamp Ar	nd Ballast Retrofit w 2 F32 Lamp, HBF Ballast	28 watt 28	65		16	5						
15	E	Rest of Production Area - Over Mach	nine	31	ES8296H		ing Strip 8' 2 Lamp F96 T12 Ballast	90	221		16	5						850
	Р	Rest of Production Area - Over Mach	nine	31	SKR8428H		t with Reflector 8' w 4 F32 2 p, HBF Ballast 4.25" Brack		130		16	5						
16	E	Rest of Production Area - Over Mach	nine	1	EW 4432N		Wrap T8 4' w 4 F32 32 wat NBF Ballast	32	112		16	5						850. no cover
10	Р	Rest of Production Area - Over Mach	nine	1	WK4228H		Kit with Reflector 4' 2L F32 watt Lamps, HBF Ballast	T8 28 28	65		16	5						000.110 00101
17	E	Rest of Production Area		4	ET4232N		ing Troffer T8 4' w 2 F32 32 Lamp, NBF Ballast	32	58		16	5						
	Р	Rest of Production Area		4	LB228L	Lamp Ar	nd Ballast Retrofit w 2 F32 Lamp, LBF Ballast	28 watt 28	42		16	5						
18	E	Rest of Production Area		2	ET2217N	Existing	Troffer 2x2 2L F17 T8, NBF	Ballast 17	33		16	5						
10	Р	Rest of Production Area		2	RL217N	R	elamp with 2 F17 T8 Lamps	s 17	33		16	5						
19	E	Rest of Production Area		6	ES8432N		Strip T8 8' w 4 F32 32 watt NBF Ballast	32	112	14.0 ft	16	5						850. against wall - walkway
19	Р	Rest of Production Area		6	LB428N	Lamp Ar	nd Ballast Retrofit w 4 F32 : Lamp, NBF Ballast	28 watt 28	96	14.0 ft	16	5						000. aganist wan - waikWdy

					Existing Troffer T8 4' w 3 F32 32 watt									
20	E	Room 209 - Press Supervisor	2	ET4332N	Lamp, NBF Ballast Troffer Kit with Reflector 4' w 2 F32 28 watt	32	85	9	5					
	Ρ	Room 209 - Press Supervisor	2	TK4228N	Lamp, NBF Ballast	28	48	9	5					
21	E	208 Bindery Office	4	ET4332N	Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF Ballast	32	85	9	5					
21	Р	208 Bindery Office	4	TK4228N	Troffer Kit with Reflector 4' w 2 F32 28 watt Lamp, NBF Ballast	28	48	9	5					
	E	207 Office	2	ET4332N	Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF Ballast	32	85	9	5					
22	Р	207 Office	2	TK4228N	Troffer Kit with Reflector 4' w 2 F32 28 watt	28	48	9	5					
		DOI Floridad		ET (000h)	Lamp, NBF Ballast Existing Troffer T8 4' w 2 F32 32 watt		50		-					
23		301 Electrical	2	ET4232N	Lamp, NBF Ballast Lamp And Ballast Retrofit w 2 F32 28 watt	32	58	2	5					
	ľ	301 Electrical	2	LB228N	Lamp, NBF Ballast	28	48	2	5					
24	E	302 Telephone Room	2	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF Ballast	32	58	2	5					
	Ρ	302 Telephone Room	2	LB228N	Lamp And Ballast Retrofit w 2 F32 28 watt Lamp, NBF Ballast	28	48	2	5					
	E	119 Womens RR	5	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF Ballast	32	58	9	5		1.00	WSDPDTI	20%	
25	Р	119 Womens RR	5	LB228LP	Lamp and Ballast Retrofit 2L F32 T8 28 watt Lamps, PRS LBF Ballast	28	42	9	5				20%	
	E	201 Office	4	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF Ballast	32	58	9	5					
26	P	201 Office	4	LB228N	Lamp And Ballast Retrofit w 2 F32 28 watt	28	48	9	5					
	Ŀ	202 Server Room	6	ET4232N	Lamp, NBF Ballast Existing Troffer T8 4' w 2 F32 32 watt	32	58	2	5					
27	-	202 Server Room	6	LB228N	Lamp, NBF Ballast Lamp And Ballast Retrofit w 2 F32 28 watt	32 28	48	2	5					
	ľ				Lamp, NBF Ballast Existing Troffer T8 4' w 2 F32 32 watt				_					
28	E	305 Electrical	4	ET4232N	Lamp, NBF Ballast	32	58	2	5					
	Ρ	305 Electrical	4	LB228N	Lamp And Ballast Retrofit w 2 F32 28 watt Lamp, NBF Ballast	28	48	2	5					
29	E	210 Press Room	8	ES4248H	Existing Strip 4' 2 Lamp F48 T12 HO Ballast	60	133	16	5					850
29	Р	210 Press Room	8	NVS4328H	New V-Strip Fixture 4' 3L F32 T8 28 watt Lamps, High BF Ballast	28	99	16	5					630
	E	210 Press Room	3	ES8296H	Existing Strip 8' 2 Lamp F96 T12 HO Ballast	95	221	16	5					
30	Р	210 Press Room	3	SKR8428H4	Strip Kit with Reflector 8' w 4 F32 28 watt Lamp, HBF Ballast 4.25" Brackets	28	130	16	5					850
	E	210 Press Room	1	ES8432N	Existing Strip T8 8' w 4 F32 32 watt Lamp, NBE Ballast	32	112	16	5					
31	F	210 Press Room	1	LB428N	Lamp And Ballast Retrofit w 4 F32 28 watt Lamp, NBF Ballast	28	96	16	5					850
				ES8432N	Existing Strip T8 8' w 4 F32 32 watt Lamp,	32								
32	Ē	Mezzanine	9	LB428N	NBF Ballast Lamp And Ballast Retrofit w 4 F32 28 watt	32 28	112 96	16	5					850
	٢	Mezzanine	9	LB428N	Lamp, NBF Ballast	28	96	16	5					
33	E	307 Vault	8	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF Ballast	32	58	9	5					
	Ρ	307 Vault	8	LB228N	Lamp And Ballast Retrofit w 2 F32 28 watt Lamp, NBF Ballast	28	48	9	5					
34	E	Mezz Above Vault	3	ES8432N	Existing Strip T8 8' w 4 F32 32 watt Lamp, NBF Ballast	32	112	9	5					
34	Р	Mezz Above Vault	3	LB428N	Lamp And Ballast Retrofit w 4 F32 28 watt Lamp, NBF Ballast	28	96	9	5					
	E	Chemical Room	1	EINC100	Existing Incandescent 100 watt Lamp	100	100	9	5					
35	P	Chemical Room	1	CFLR32	Retrofit HID with 32 watt CFL Lamp and Ballast	32	32	9	5					explosion proof
	E	309 Area	7	ES8232N	Existing Strip T8 8' w 2 F32 32 watt Lamp,	32	58	9	5	25				
36	H	309 Area	7	LB228N	NBF Ballast Lamp And Ballast Retrofit w 2 F32 28 watt	28	48	9	5					850
					Lamp, NBF Ballast Existing Troffer T8 4' w 2 F32 32 watt				_					
37	F	313 Locked Room	2	ET4232N	Lamp, NBF Ballast Lamp And Ballast Retrofit w 2 F32 28 watt	32	58	9	5					
	P	313 Locked Room	2	LB228N	Lamp, NBF Ballast	28	48	9	5					
38	E	312 Locked Room	2	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF Ballast	32	58	9	5					
	Ρ	312 Locked Room	2	LB228N	Lamp And Ballast Retrofit w 2 F32 28 watt Lamp, NBF Ballast	28	48	9	5					
	E	311	4	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF Ballast	32	58	9	5					
39	Р	311	4	LB228N	Lamp And Ballast Retrofit w 2 F32 28 watt Lamp, NBF Ballast	28	48	9	5					
	ч				Lang, tas balant									

	E Mezz in this Area	8	ES4232N	Existing Strip T8 4' w 2 F32 32 watt Lamp,	32	58	9	5				
40	P Mezz in this Area	8	LB228L	NBF Ballast Lamp And Ballast Retrofit w 2 F32 28 watt	28	42	9	5				850
		-		Lamp, LBF Ballast Existing Troffer T8 4' w 2 F32 32 watt								
41	E 212A	4	ET4232N	Lamp, NBF Ballast Lamp And Ballast Retrofit w 2 F32 28 watt	32	58	9	5				
	P 212A	4	LB228L	Lamp, LBF Ballast	28	42	9	5				
42	E 212B	7	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF Ballast	32	58	9	5				
	P 212B	7	LB228L	Lamp And Ballast Retrofit w 2 F32 28 watt Lamp, LBF Ballast	28	42	9	5				
	E 308	1	ES8432N	Existing Strip T8 8' w 4 F32 32 watt Lamp, NBF Ballast	32	112	9	5				
43	P 308	1	LB428L	Lamp And Ballast Retrofit w 4 F32 28 watt Lamp, LBF Ballast	28	84	9	5				850
	E 310	4	ES8432N	Existing Strip T8 8' w 4 F32 32 watt Lamp, NBF Ballast	32	112	9	5				
44	P 310	4	LB428N	Lamp And Ballast Retrofit w 4 F32 28 watt Lamp, NBF Ballast	28	96	9	5				
	206 Hall and Open Area back by Womens RR	9	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt	32	58	9	5				
45	P 206 Hall and Open Area back by Womens RR	9	LB228H	Lamp, NBF Ballast Lamp And Ballast Retrofit w 2 F32 28 watt	28	65	9	5				850
			FT (000)	Lamp, HBF Ballast Existing Troffer T8 4' w 2 F32 32 watt								
46	E 206 Hall and Open Area back by Womens RR	2	ET4232N	Lamp, NBF Ballast Lamp And Ballast Retrofit w 2 F32 28 watt	32 28	58 42	9 9	5				850
	P 206 Hall and Open Area back by Womens RR		LB228L	Lamp, LBF Ballast Existing Troffer 2x2 2L F32 T8 U-Tube								
47	E 206 Hall and Open Area back by Womens RR	6	ET2232N	Lamps, NBF Ballast Troffer Kit with Reflector 2' w 2 F17 17 watt	32	58	9	5				850
	P 206 Hall and Open Area back by Womens RR	6	TK2217N	Lamp NBF	17	31	9	5				
48	E 118 RR in 206	5	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF Ballast	32	58	9	5	1.00	WSDPDT2PI	20%	
	P 118 RR in 206	5	LB228LP	Lamp and Ballast Retrofit 2L F32 T8 28 watt Lamps, PRS LBF Ballast	28	42	9	5			20%	
49	E 120 First Aid	1	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF Ballast	32	58	9	5				
49	P 120 First Aid	1	LB228L	Lamp And Ballast Retrofit w 2 F32 28 watt Lamp, LBF Ballast	28	42	9	5				
	E Hot Water Room in 206	1	ES4232N	Existing Strip T8 4' w 2 F32 32 watt Lamp, NBF Ballast	32	58	2	5				
50	P Hot Water Room in 206	1	LB228L	Lamp And Ballast Retrofit w 2 F32 28 watt Lamp, LBF Ballast	28	42	2	5				
	E Old Dark Room	11	EINC60	Existing Incandescent 60 watt Lamp	60	60	9	5				
51	P Old Dark Room	4	NT4228H	New Troffer Fixture 4' w 2 F32 28 watt Lamp, HBF Ballast	28	65	9	5				drop ceiling. 850
	E Old Dark Room	2	ES8260N	Existing Strip 8' 2 Lamp F96 60 watt Lamp	60	138	9	5				
52	P Old Dark Room	2	NT4228H	T12 Standard Ballast New Troffer Fixture 4' w 2 F32 28 watt	28	65	9	5				850
				Lamp, HBF Ballast Existing Troffer T8 4' w 2 F32 32 watt			_					
53	E Next Section with Maps on Wall	15	ET4232N	Lamp, NBF Ballast Lamp And Ballast Retrofit w 2 F32 28 watt	32	58	9	5				850
	P Next Section with Maps on Wall	15	LB228N	Lamp, NBF Ballast	28	48	9	5				
54	E 204 Hall	5	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF Ballast Lamp And Ballast Retrofit w 2 F32 28 watt	32	58	9	5				
	P 204 Hall	5	LB228L	Lamp, LBF Ballast	28	42	9	5				
55	E 204 Hall	9	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF Ballast	32	58	9	5				
	P 204 Hall	9	LB228L	Lamp And Ballast Retrofit w 2 F32 28 watt Lamp, LBF Ballast	28	42	9	5				
	E Open Area / Cubes	19	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF Ballast	32	58	9	5				
56	P Open Area / Cubes	19	LB228N	Lamp And Ballast Retrofit w 2 F32 28 watt Lamp, NBF Ballast	28	48	9	5				
	E Office 201	5	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF Ballast	32	58	9	5				
57	P Office 201	5	LB228N	Lamp And Ballast Retrofit w 2 F32 28 watt Lamp, NBF Ballast	28	48	9	5				
	E Office / Storage off of 201	4	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt	32	58	9	5				
58	P Office / Storage off of 201	4	LB228N	Lamp, NBF Ballast Lamp And Ballast Retrofit w 2 F32 28 watt	28	48	9	5				
		4	ETADONI	Lamp, NBF Ballast Existing Troffer T8 4' w 2 F32 32 watt	32		9	5				
59	E Office 203	4	ET4232N LB228N	Lamp, NBF Ballast Lamp And Ballast Retrofit w 2 F32 28 watt	32	58		-				
	P Office 203	4	LB228N	Lamp, NBF Ballast	28	48	9	5				

	-	1104D	4	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt	32	58	9	5			
60	- -	1104D	4	LB228N	Lamp, NBF Ballast Lamp And Ballast Retrofit w 2 F32 28 watt	28	48	9	5			
					Lamp, NBF Ballast Existing Troffer T8 4' w 2 F32 32 watt			_				
61	E	200 Facilities Office	2	ET4232N	Lamp, NBF Ballast Lamp And Ballast Retrofit w 2 F32 28 watt	32	58	9	5			
	Р	200 Facilities Office	2	LB228N	Lamp, NBF Ballast	28	48	9	5			
62	E	Telephone Room	1	ES4132N	Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast	32	32	2	5			
	Р	Telephone Room	1	LB128L	Lamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast	28	22	2	5			
63	E	100	105	ET4332N	Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF Ballast	32	85	9	5			
63	Р	100	105	TK4228N	Troffer Kit with Reflector 4' w 2 F32 28 watt Lamp, NBF Ballast	28	48	9	5			62 lamps burned out
	E	109 HR Office	4	ET4332N	Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF Ballast	32	85	9	5			
64	Р	109 HR Office	4	TK4228N	Troffer Kit with Reflector 4' w 2 F32 28 watt Lamp, NBF Ballast	28	48	9	5			
	E	108 Conf	6	ET4332N	Existing Troffer T8 4' w 3 F32 32 watt	32	85	9	5			
65	P	108 Conf	6	TK4228N	Lamp, NBF Ballast Troffer Kit with Reflector 4' w 2 F32 28 watt Lamp, NBF Ballast	28	48	9	5			
	_	107 Office	4	ET4332N	Existing Troffer T8 4' w 3 F32 32 watt	32	85	9	5			
66	- -	107 Office	4	TK4228N	Lamp, NBF Ballast Troffer Kit with Reflector 4' w 2 F32 28 watt	28	48	9	5			
					Lamp, NBF Ballast Existing Troffer T8 4' w 3 F32 32 watt							
67	E	106 Office	2	ET4332N	Lamp, NBF Ballast Troffer Kit with Reflector 4' w 2 F32 28 watt	32	85	9	5			
	Р	106 Office	2	TK4228N	Lamp, NBF Ballast	28	48	9	5			
68	E	105 Office	2	ET4332N	Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF Ballast	32	85	9	5			
	Р	105 Office	2	TK4228N	Troffer Kit with Reflector 4' w 2 F32 28 watt Lamp, NBF Ballast	28	48	9	5			
69	E	104 Office	2	ET4332N	Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF Ballast	32	85	9	5			
0.5	Р	104 Office	2	TK4228N	Troffer Kit with Reflector 4' w 2 F32 28 watt Lamp, NBF Ballast	28	48	9	5			
	E	103 Office	4	ET4332N	Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF Ballast	32	85	9	5			
70	Р	103 Office	4	TK4228N	Troffer Kit with Reflector 4' w 2 F32 28 watt Lamp, NBF Ballast	28	48	9	5			
	E	102 Office	2	ET4332N	Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF Ballast	32	85	9	5			
71	Р	102 Office	2	TK4228N	Troffer Kit with Reflector 4' w 2 F32 28 watt Lamp, NBF Ballast	28	48	9	5			
	E	101 Office	2	ET4332N	Existing Troffer T8 4' w 3 F32 32 watt	32	85	9	5			
72	Р	101 Office	2	TK4228N	Lamp, NBF Ballast Troffer Kit with Reflector 4' w 2 F32 28 watt	28	48	9	5			
	-	000 A daria Quaraha	2	ET4332N	Lamp, NBF Ballast Existing Troffer T8 4' w 3 F32 32 watt	32	85	2	5			
73	E	300 Admin Supply 300 Admin Supply	2		Lamp, NBF Ballast Troffer Kit with Reflector 4' w 2 F32 28 watt	32 28	48	2	5			
				TK4228N	Lamp, NBF Ballast Existing Troffer T8 4' w 3 F32 32 watt							
74	E	113 Office	2	ET4332N	Lamp, NBF Ballast Troffer Kit with Reflector 4' w 2 F32 28 watt	32	85	9	5			
	Р	113 Office	2	TK4228N	Lamp, NBF Ballast	28	48	9	5			
75	E	114 Office	2	ET4332N	Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF Ballast	32	85	9	5			
	Р	114 Office	2	TK4228N	Troffer Kit with Reflector 4' w 2 F32 28 watt Lamp, NBF Ballast	28	48	9	5			
76	E	Front of Main Shop - Halls	41	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF Ballast	32	58	9	5			
	Р	Front of Main Shop - Halls	41	LB228L	Lamp And Ballast Retrofit w 2 F32 28 watt Lamp, LBF Ballast	28	42	9	5			
	E	Front of Main Shop - Halls	10	ET2217N	Existing Troffer 2x2 2L F17 T8, NBF Ballast	17	33	9	5			
77	Р	Front of Main Shop - Halls	10	RL217N	Relamp with 2 F17 T8 Lamps	17	33	9	5			
	E	Front of Main Shop - Halls	6	ECFL32	Existing 32 watt CFL Lamp	32	32	9	5			
78	Р	Front of Main Shop - Halls	6	ECFL32	Existing 32 watt CFL Lamp	32	32	9	5			can light
	E	Front of Main Shop - Halls	3	EFMV100	Existing Fixture Mercury Vapor 100 watt	100	125	9	5			
79	Р	Front of Main Shop - Halls	3	CFLR32	Lamp Retrofit HID with 32 watt CFL Lamp and	32	32	9	5			can light
			5	O. LINC	Ballast	UL.		Ū	Ū			

	m				Existing Strip T8 4' w 1 F32 32 watt Lamp,											
80	E	Telephone Room	1	ES4132N	NBF Ballast Lamp And Ballast Retrofit w 1 F32 28 watt	32	32		2	5						
	Р	Telephone Room	1	LB128L	Lamp And Ballast Retroit w 1 F32 28 watt Lamp, LBF Ballast	28	22		2	5						
	E	Main Telephone Room	1	E\$4232N	Existing Strip T8 4' w 2 F32 32 watt Lamp, NBF Ballast	32	58		2	5						
81	Р	Main Telephone Room	1	LB228L	Lamp And Ballast Retrofit w 2 F32 28 watt Lamp, LBF Ballast	28	42		2	5						
F	П				Existing Strip T8 4' w 2 F32 32 watt Lamp,					_						
82	H	Main Electrical	2	ES4232N	NBF Ballast Lamp And Ballast Retrofit w 2 F32 28 watt	32	58		2	5						
	Р	Main Electrical	2	LB228N	Lamp, NBF Ballast	28	48		2	5						
83	E	705 Sprinkler Room	1	ES4232N	Existing Strip T8 4' w 2 F32 32 watt Lamp, NBF Ballast	32	58		2	5						
	Ρ	705 Sprinkler Room	1	LB228L	Lamp And Ballast Retrofit w 2 F32 28 watt Lamp, LBF Ballast	28	42		2	5						
	E	507 Mens RR	4	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF Ballast	32	58		9	5		1.00	WSDPDTI	20%		
84	Р	507 Mens RR	4	LB228LP	Lamp and Ballast Retrofit 2L F32 T8 28 watt Lamps, PRS LBF Ballast	28	42		9	5				20%		
		702 Fire Alarm Room	2	ES4232N	Existing Strip T8 4' w 2 F32 32 watt Lamp,	32	58		2	5						
85	Ē				NBF Ballast Lamp And Ballast Retrofit w 2 F32 28 watt											
	ľ	702 Fire Alarm Room	2	LB228L	Lamp, LBF Ballast	28	42		2	5						
86	E	506 Womens RR	4	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF Ballast	32	58		9	5		1.00	WSDPDTI	20%		
	Р	506 Womens RR	4	LB228LP	Lamp and Ballast Retrofit 2L F32 T8 28 watt Lamps, PRS LBF Ballast	28	42		9	5				20%		
ſ	E	504 Cafeteria	12	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF Ballast	32	58		9	5						
87	Р	504 Cafeteria	12	LB228L	Lamp And Ballast Retrofit w 2 F32 28 watt Lamp, LBF Ballast	28	42		9	5						
F	L	707 Conf	12	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt	32	58		9	5						
88	Ē				Lamp, NBF Ballast Lamp And Ballast Retrofit w 2 F32 28 watt											
	ľ	707 Conf	12	LB228N	Lamp, NBF Ballast	28	48		9	5						
89	E	708 6A Storage	10	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF Ballast	32	58		2	5						
	Р	708 6A Storage	10	LB228N	Lamp And Ballast Retrofit w 2 F32 28 watt Lamp, NBF Ballast	28	48		2	5						
	E	Telephone Room	1	ES4132N	Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast	32	32		2	5						
90	Р	Telephone Room	1	LB128L	Lamp And Ballast Retrofit w 1 F32 28 watt Lamp, LBF Ballast	28	22		2	5						
F	F	Mech to left	1	ES4232N	Existing Strip T8 4' w 2 F32 32 watt Lamp,	32	58		2	5						
91	H	Mech to left	1	LB228L	NBF Ballast Lamp And Ballast Retrofit w 2 F32 28 watt	28	42		2	5						
	Ĥ				Lamp, LBF Ballast Existing Troffer T8 4' w 2 F32 32 watt											
92	E	710 Fulfilment	135	ET4232N	Lamp, NBF Ballast Lamp And Ballast Retrofit w 2 F32 28 watt	32	58		9	5						
	Р	710 Fulfillment	135	LB228N	Lamp And Ballast Retroit w 2 F32 28 watt Lamp, NBF Ballast	28	48		9	5						
	E	710 Fulfilment	29	ET2217N	Existing Troffer 2x2 2L F17 T8, NBF Ballast	17	33		9	5						
93	Р	710 Fulfillment	29	RL217N	Relamp with 2 F17 T8 Lamps	17	33		9	5						
Ē	E	710 Fulfilment	58	ET4332N	Existing Troffer T8 4' w 3 F32 32 watt	32	85		9	5						
94	H	710 Fulfilment	58	TK4228N	Lamp, NBF Ballast Troffer Kit with Reflector 4' w 2 F32 28 watt	28	48		9	5						
	ii D				Lamp, NBF Ballast Existing Troffer T8 4' w 3 F32 32 watt											
95	E	715	6	ET4332N	Lamp, NBF Ballast Troffer Kit with Reflector 4' w 2 F32 28 watt	32	85		9	5						
	Р	715	6	TK4228N	Lamp, NBF Ballast	28	48		9	5						
96	E	714 in 710	6	ET4332N	Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF Ballast	32	85		9	5						
	Р	714 in 710	6	TK4228N	Troffer Kit with Reflector 4' w 2 F32 28 watt Lamp, NBF Ballast	28	48		9	5						
Ē	E	Telephone Room A back in Hall	1	ES4132N	Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast	32	32		2	5						
97	Р	Telephone Room A back in Hall	1	LB128L	Lamp And Ballast Retrofit w 1 F32 28 watt	28	22		2	5						
F		FOR Mr. Day Querker		FT (000)	Lamp, LBF Ballast Existing Troffer T8 4' w 2 F32 32 watt											
98	H	500 Info Doc Service	113	ET4232N	Lamp, NBF Ballast Lamp And Ballast Retrofit w 2 F32 28 watt	32	58		9	5						850, except 4 over cubes get 841
	Р	500 Info Doc Service	113	LB228N	Lamp, NBF Ballast	28	48		9	5						
99	E	500 Info Doc Service	8	ET2217N	Existing Troffer 2x2 2L F17 T8, NBF Ballast	17	33		9	5						
	Р	500 Info Doc Service	8	RL217N	Relamp with 2 F17 T8 Lamps	17	33		9	5						
_								_	_		_				-	

100		6	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF Ballast Lamp And Ballast Retrofit w 2 F32 28 watt	32	58	9	5					
F	501 Office	6	LB228N	Lamp, NBF Ballast	28	48	9	5					
101	502 Mens RR (back in hall)	3	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF Ballast	32	58	9	5		1.00	WSDPDTI	20%	
F	502 Mens RR (back in hall)	3	LB228LP	Lamp and Ballast Retrofit 2L F32 T8 28 watt Lamps, PRS LBF Ballast	28	42	9	5				20%	
102	503 Womens RR	3	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF Ballast	32	58	9	5		1.00	WSDPDTI	20%	
F	503 Womens RR	3	LB228LP	Lamp and Ballast Retrofit 2L F32 T8 28 watt Lamps, PRS LBF Ballast	28	42	9	5				20%	
103	700 State Library	110	ET4232N	Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF Ballast	32	58	9	5					
F	700 State Library	110	LB228N	Lamp And Ballast Retrofit w 2 F32 28 watt Lamp, NBF Ballast	28	48	9	5					
104	700 State Library	1	ET2217N	Existing Troffer 2x2 2L F17 T8, NBF Ballast	17	33	9	5					
F	700 State Library	1	RL217N	Relamp with 2 F17 T8 Lamps	17	33	9	5					
105	700A Electrical	2	ES4232N	Existing Strip T8 4' w 2 F32 32 watt Lamp, NBF Ballast	32	58	2	5					
F	700A Electrical	2	LB228N	Lamp And Ballast Retrofit w 2 F32 28 watt Lamp, NBF Ballast	28	48	2	5					
106		1	E\$4232N	Existing Strip T8 4' w 2 F32 32 watt Lamp, NBF Ballast	32	58	2	5					
106		1	LB228L	Lamp And Ballast Retrofit w 2 F32 28 watt Lamp, LBF Ballast	28	42	2	5					
E	Existing Fixture Total	1,254											
F	Proposed Fixture Total	1,247					Sens	or Tot	al	7			

Project Analysis for State Modular Building

Energy Analysis

Existing System Baseline

Energy Efficient System

Energy Reduction

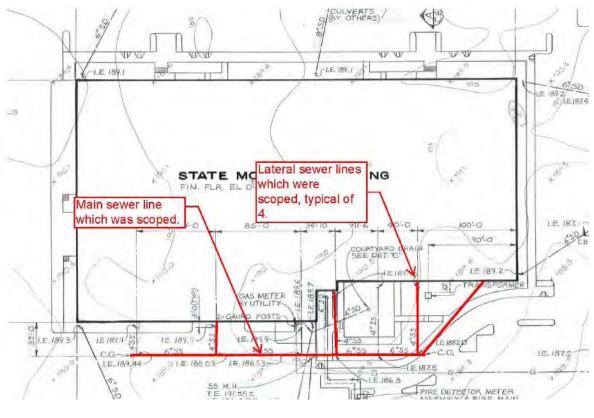
Annual Energy Savings

283,234 kWh / Yr. 215,256 kWh / Yr. 24.00% 67,978 kWh / Yr.

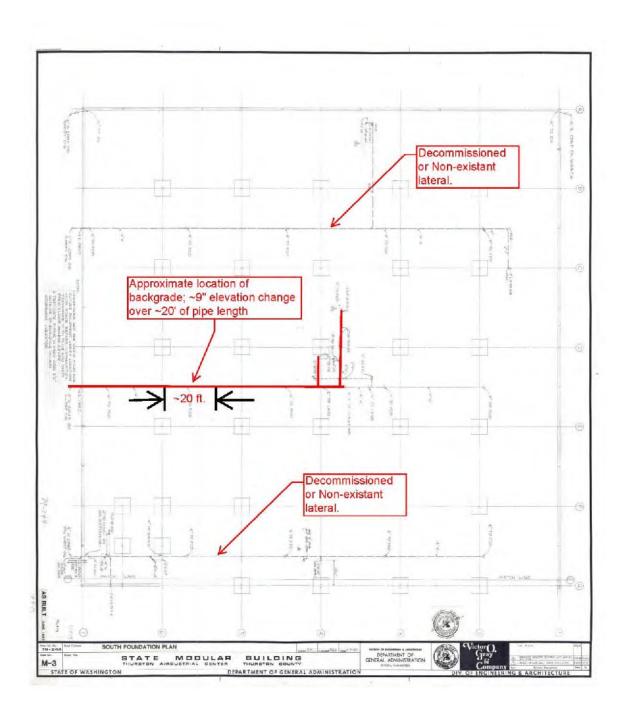
	~ ·	~ 1	
Maintenance	Savings	(alcu	lations
Wiumiteriumee	JuvingJ	Cuicu	lations

	centance savings calculations								Lamp			Year 1 Lamp	Year 2 Lamp	Year 3 Lamp	Year 4 Lamp	Year 5 Lamp
					Lamp	Input		Annual	Changes	Retail	Lamps x	Replacement	Replacement	Replacement	Replacement	Replacement
Code	Description	Qty	Lamps	Туре	Watts	Watts	Lamp Life	Hours	Per Year	Price	Cost	Costs	Costs	Costs	Costs	Costs
ECFL32	Existing 32 watt CFL Lamp	18	Lamps 1	CFL	32	32	10.000	2.340	4.21	\$5.00	\$5.00	\$21.06	\$21.69	\$22.34	\$23.01	\$23.70
ET2217N	Existing Troffer 2x2 2L F17 T8, NBF Ballast	51	2	T8	17	33	20.000	2,340	4.21	\$4.00	\$8.00	\$47.74	\$49.17	\$50.64	\$52.16	\$53.73
ET2232N	Existing Troffer 2x2 2LF32 T8 U-Tube Lamps, NBF Ballast	6	2	T8	32	58	20,000	2,340	0.70	\$4.00	\$8.00	\$5.62	\$5.78	\$5.96	\$6.14	\$6.32
ES4248H	Existing Strip 4' 2 Lamp F48 T12 HO Ballast	8	2	F	60	133	20,000	4.160	1.66	\$4.00	\$8.00	\$13.31	\$13.71	\$14.12	\$14.55	\$14.98
E\$8260N	Existing Strip 8' 2 Lamp F96 60 watt Lamp T12 Standard Ballast	2	2	F	60	138	20,000	2.340	0.23	\$4.00	\$8.00	\$1.87	\$1.93	\$1.99	\$2.05	\$2.11
E\$8296H	Existing Strip 8' 2 Lamp F96 T12 HO Ballast	34	2	F	95	221	20,000	4.160	7.07	\$4.00	\$8.00	\$56.58	\$58.27	\$60.02	\$61.82	\$63.68
EINC60	Existing Incandescent 60 watt Lamp	11	1	INC	60	60	1.000	2.340	25.74	\$2.00	\$2.00	\$51.48	\$53.02	\$54.62	\$56.25	\$57.94
EINC100	Existing Incandescent 100 watt Lamp	1	1	INC	100	100	1.000	2,340	2.34	\$2.00	\$2.00	\$4.68	\$4.82	\$4.97	\$5.11	\$5.27
EFMV100	Existing Fixture Mercury Vapor 100 watt Lamp	6	1	MV	100	125	20.000	2,340	0.70	\$23.00	\$23.00	\$16.15	\$16.63	\$17.13	\$17.64	\$18.17
ES4132N	Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast	4	1	F	32	32	20,000	520	0.10	\$4.00	\$4.00	\$0.42	\$0.43	\$0.44	\$0.45	\$0.47
E\$4232N	Existing Strip T8 4' w 2 F32 32 watt Lamp, NBF Ballast	19	2	F	32	58	20.000	520	0.49	\$4.00	\$8.00	\$3.95	\$4.07	\$4.19	\$4.32	\$4.45
ET4232N	Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF Ballast	608	2	F	32	58	20,000	2,340	71.14	\$4.00	\$8.00	\$569.09	\$586.16	\$603.75	\$621.86	\$640.51
ET4332N	Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF Ballast	228	3	F	32	85	20,000	2,340	26.68	\$4.00	\$12.00	\$320.11	\$329.72	\$339.61	\$349.80	\$360.29
EW4232N	Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF Ballast	1	2	F	32	58	20,000	520	0.03	\$4.00	\$8.00	\$0.21	\$0.21	\$0.22	\$0.23	\$0.23
EW4332N	Existing Wrap T8 4' w 3 F32 32 watt Lamp, NBF Ballast	5	3	F	32	85	20,000	2.340	0.59	\$4.00	\$12.00	\$7.02	\$7.23	\$7.45	\$7.67	\$7.90
EW4432N	Existing Wrap T8 4' w 4 F32 32 watt Lamp, NBF Ballast	1	4	F	32	112	20,000	4.160	0.33	\$4.00	\$16.00	\$3.33	\$3.43	\$3.53	\$3.64	\$3.75
E\$8232N	Existing Strip T8 8' w 2 F32 32 watt Lamp, NBF Ballast	36	2	F	32	58	20.000	2.340	4.21	\$4.00	\$8.00	\$33.70	\$34.71	\$35.75	\$36.82	\$37.93
E\$8432N	Existing Strip T8 8' w 4 F32 32 watt Lamp, NBF Ballast	215	4	F	32	112	20.000	2.340	25.16	\$4.00	\$16.00	\$402.48	\$414.55	\$426.99	\$439.80	\$452.99
_					-			-,		+	+	\$1,558.78	\$1,605.54	\$1,653.71	\$1,703.32	\$1,754.42
												+ -,	1.,	<i>, _,</i>	+-,	+=)
									Ballast			Year 1 Ballast	Year 2 Ballast	Year 3 Ballast	Year 4 Ballast	Year 5 Ballast
					Lamp	Input	Ballast	Annual	Changes	Retail	Ballasts x	Replacement	Replacement	Replacement	Replacement	Replacement
Code	Description	Qty	Ballasts	Туре	Watts	Watts	Life	Hours	Per Year	Price	Cost	Costs	Costs	Costs	Costs	Costs
ECFL32	Existing 32 watt CFL Lamp	18	1	CFL	32	32	50,000	2,340	0.84	\$20.00	\$20.00	\$16.85	\$17.35	\$17.87	\$18.41	\$18.96
ET2217N	Existing Troffer 2x2 2L F17 T8, NBF Ballast	51	2	T8	17	33	60,000	2,340	1.99	\$11.00	\$22.00	\$43.76	\$45.07	\$46.42	\$47.82	\$49.25
ET2232N	Existing Troffer 2x2 2L F32 T8 U-Tube Lamps, NBF Ballast	6	2	T8	32	58	60,000	2,340	0.23	\$11.00	\$22.00	\$5.15	\$5.30	\$5.46	\$5.63	\$5.79
ES4248H	Existing Strip 4' 2 Lamp F48 T12 HO Ballast	8	2	F	60	133	60,000	4,160	0.55	\$25.00	\$50.00	\$27.73	\$28.57	\$29.42	\$30.30	\$31.21
E\$8260N	Existing Strip 8' 2 Lamp F96 60 watt Lamp T12 Standard Ballast	2	2	F	60	138	60,000	2,340	0.08	\$25.00	\$50.00	\$3.90	\$4.02	\$4.14	\$4.26	\$4.39
E\$8296H	Existing Strip 8' 2 Lamp F96 T12 HO Ballast	34	2	F	95	221	60,000	4,160	2.36	\$25.00	\$50.00	\$117.87	\$121.40	\$125.04	\$128.80	\$132.66
EFMV100	Existing Fixture Mercury Vapor 100 watt Lamp	6	1	MV	100	125	60,000	2,340	0.23	\$65.00	\$65.00	\$15.21	\$15.67	\$16.14	\$16.62	\$17.12
ES4132N	Existing Strip T8 4' w 1 F32 32 watt Lamp, NBF Ballast	4	1	F	32	32	60,000	520	0.03	\$11.00	\$11.00	\$0.38	\$0.39	\$0.40	\$0.42	\$0.43
E\$4232N	Existing Strip T8 4' w 2 F32 32 watt Lamp, NBF Ballast	19	2	F	32	58	60,000	520	0.16	\$11.00	\$22.00	\$3.62	\$3.73	\$3.84	\$3.96	\$4.08
ET4232N	Existing Troffer T8 4' w 2 F32 32 watt Lamp, NBF Ballast	608	2	F	32	58	60,000	2,340	23.71	\$11.00	\$22.00	\$521.66	\$537.31	\$553.43	\$570.04	\$587.14
ET4332N	Existing Troffer T8 4' w 3 F32 32 watt Lamp, NBF Ballast	228	3	F	32	85	60,000	2,340	8.89	\$11.00	\$33.00	\$293.44	\$302.24	\$311.31	\$320.65	\$330.26
EW4232N	Existing Wrap T8 4' w 2 F32 32 watt Lamp, NBF Ballast	1	2	F	32	58	60,000	520	0.01	\$11.00	\$22.00	\$0.19	\$0.20	\$0.20	\$0.21	\$0.21
EW4332N	Existing Wrap T8 4' w 3 F32 32 watt Lamp, NBF Ballast	5	3	F	32	85	60,000	2,340	0.20	\$11.00	\$33.00	\$6.44	\$6.63	\$6.83	\$7.03	\$7.24
EW4432N	Existing Wrap T8 4' w 4 F32 32 watt Lamp, NBF Ballast	1	4	F	32	112	60,000	4,160	0.07	\$11.00	\$44.00	\$3.05	\$3.14	\$3.24	\$3.33	\$3.43
E\$8232N	Existing Strip T8 8' w 2 F32 32 watt Lamp, NBF Ballast	36	2	F	32	58	60,000	2,340	1.40	\$11.00	\$22.00	\$30.89	\$31.81	\$32.77	\$33.75	\$34.76
ES8432N	Existing Strip T8 8' w 4 F32 32 watt Lamp, NBF Ballast	215	4	F	32	112	60,000	2,340	8.39	\$11.00	\$44.00	\$368.94	\$380.01	\$391.41	\$403.15	\$415.25
					1				Î			\$1,459.07	\$1,502.84	\$1,547.93	\$1,594.37	\$1,642.20
											Year	1	2	3	4	5
										Anni	ual Savings =	\$3,017.85	\$3,108.39	\$3,201.64	\$3,297.69	\$3,396.62

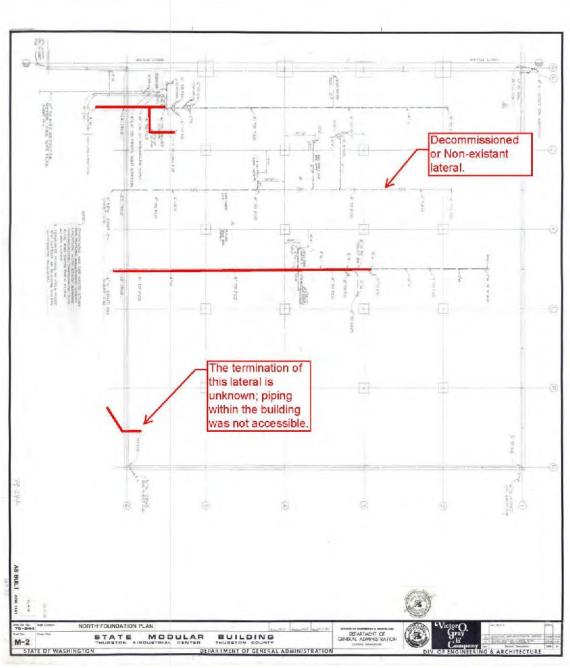
Electrical Cost (\$/kwh) = Water Cost (\$/kgal) = Heating Cost (\$/kmm) = Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image	Energy S	avings Estimate								
Notes Image: Calculation Baseline Operation Annual Swings Savings Calculation Annual Swings Savings MNN Therms HW Heating State of the second secon	Overview:									
Notes Image: Calculation Image: Calculation </th <th></th> <th></th> <th>avetama (LIM) C</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>			avetama (LIM) C							
Assumption: Mithenia Service: Annual KWN Annual KWN Therms Annual KWN Therms KWN Therms NW Healing Image: Service:		CX ON PRIMARY HVAC	Systems (HW, C	HVV, KTUS)						
Baseline Operation Annual Savings Annual kWh Therms KWh Therms WH Houling 0 61120 2% - 1,222 Bubtotal 0 0 0 1,222 0 0 0 Bubtotal 0 0 0 0 1,222 0										
Annual KWh Annual KWh Annual KWh Annual KWh Manual KWh Therms KWh Therms HW Heating 61120 2% - 1,222 -	Savings Cale	culations								
Annual kWM Therms % Savings kWh Therms HW Heating 61120 2% 1,222 Subtotal 0 0 0 1,222 Assumptions: 0 0 0 0 0 PMAC system currently operates 24/7. 0 0 0 0 0 Uncoupped station subtoring will result in a minimum average savings of 5% of current usage on chilles 0 0 0 0 Rox commissioning will result in a minimum average savings of 5% of current usage on fam motor operation of all 4 RTUe 0 0 0 0 Estimated Annual Savings 1,222 therms 0 <				Baseline			Annual	Savings		
Assumptions: 1,222 Assumptions: 1,222 Assumptions: 1,222 MAC system currently operates 247. 1,222 Uncoupled setback is not currently occupied in any location within the facility RCx commissioning will result in a minimum average savings of 5% of current usage on chillers RCx commissioning will result in a minimum average savings of 5% of current usage on fain motor operation of all 4 RTUs Estimated Annual Savings: 1,222 Gas Savings = 1,222 Bett Savings = 1,222 Sever Savings = 1,222 Got Savings = 1,222 Gas Savings = 1,222 Gas Savings = 1,222 Heating Cost (S/kmt) = Water Cost (S/kgal) = Water Savings = Sever Savings = Sever Savings = 1,222 Heating Cost (S/kmt) = Water Cost (S/kgal) = Heating Cost (S/kmt) = Water Cost (S/kgal) = Water Cost (S/kgal) = Sever Cost (S/kgal) = Sever Savings = Sever Cost (S/kgal) = Sever Cost (S/kgal) = Date : Water Cost (S/kgal) = Date :				Annual kWh		% Savings	kWh	Therms		
Assumptions: 1,222 Assumptions: 1,222 Assumptions: 1,222 MAC system currently operates 247. 1,222 Uncoupled setback is not currently occupied in any location within the facility RCx commissioning will result in a minimum average savings of 5% of current usage on chillers RCx commissioning will result in a minimum average savings of 5% of current usage on fain motor operation of all 4 RTUs Estimated Annual Savings: 1,222 Gas Savings = 1,222 Bett Savings = 1,222 Sever Savings = 1,222 Got Savings = 1,222 Gas Savings = 1,222 Gas Savings = 1,222 Heating Cost (S/kmt) = Water Cost (S/kgal) = Water Savings = Sever Savings = Sever Savings = 1,222 Heating Cost (S/kmt) = Water Cost (S/kgal) = Heating Cost (S/kmt) = Water Cost (S/kgal) = Water Cost (S/kgal) = Sever Cost (S/kgal) = Sever Savings = Sever Cost (S/kgal) = Sever Cost (S/kgal) = Date : Water Cost (S/kgal) = Date :		HW Hea	atina		61120	2%	-	1.222		
Assumption: MAX bystem ourrently operate 247. MAX bystem ourrently operate 247. Image: 1 manual sectors of the ballity RCr. commissioning will result in a minimum average savings of 5% of current usage on chillers Image: 1 manual sectors of the ballity RCr. commissioning will result in a minimum average savings of 5% of current usage on chillers Image: 1 manual sectors of the ballity RCr. commissioning will result in a minimum average savings of 5% of current usage on fam motor operation of all 4 RTUs Image: 1 manual sectors of the motor operation of all 4 RTUs Estimated Annual Savings = 1.22 therms Image: 1 manual sectors of the motor operation of all 4 RTUs Water Savings = 1.22 therms Image: 1 manual sectors of the motor operation of all 4 RTUs Utility Information: 1.22 therms Image: 1 manual sectors of the motor operation of all 4 RTUs Utility Information: 1.22 therms Image: 1 manual sectors of the motor operation of all 4 RTUs Utility Information: 1.22 therms Image: 1 manual sectors of the motor operation of all 4 RTUs Utility Information: 1.22 therms Image: 1 manual sectors of the motor operation of all 4 RTUs Water Cost (Sivegal) = 1.22 therms Image: 1 manual sectors of the motor operation of all 4 RTUs Utility Informatio							-			
Assumption: MAX bystem ourrently operate 247. MAX bystem ourrently operate 247. Image: 1 manual sectors of the ballity RCr. commissioning will result in a minimum average savings of 5% of current usage on chillers Image: 1 manual sectors of the ballity RCr. commissioning will result in a minimum average savings of 5% of current usage on chillers Image: 1 manual sectors of the ballity RCr. commissioning will result in a minimum average savings of 5% of current usage on fam motor operation of all 4 RTUs Image: 1 manual sectors of the motor operation of all 4 RTUs Estimated Annual Savings = 1.22 therms Image: 1 manual sectors of the motor operation of all 4 RTUs Water Savings = 1.22 therms Image: 1 manual sectors of the motor operation of all 4 RTUs Utility Information: 1.22 therms Image: 1 manual sectors of the motor operation of all 4 RTUs Utility Information: 1.22 therms Image: 1 manual sectors of the motor operation of all 4 RTUs Utility Information: 1.22 therms Image: 1 manual sectors of the motor operation of all 4 RTUs Utility Information: 1.22 therms Image: 1 manual sectors of the motor operation of all 4 RTUs Water Cost (Sivegal) = 1.22 therms Image: 1 manual sectors of the motor operation of all 4 RTUs Utility Informatio		Subtota		-			-	1.222		
HVAC system currently operates 247. Uncocupied stability is a minimum average savings of 5% of current usage on chillers RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs Estimated Annual Savings = 1,222 therms Elect Savings = 1,222 therms Elect Savings = - Water Savings = - Water Savings = - Cost Savings (\$) = \$ - Water Cost (\$/kwh) = + Heating Cost (\$/kwh) =								,		
HVAC system currently operates 247. HVAC system currently operates 247. RCx commissioning will result in a minimum average savings of 5% of current usage on chillers RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs Edition of the savings = 1,222 therms Edit Savings = 1,222 therms Swer Savings = 1,222 therms Swer Savings = 1,222 therms Edit Savings = 1,222 therms Edit Savings = 1,222 therms Swer Savings = 1,222 therms Swer Savings = 1,222 therms Edit Savings = 1,222 therms Swer Savings = 1,222 therms										
HVAC system currently operates 247. HVAC system currently operates 247. RCx commissioning will result in a minimum average savings of 5% of current usage on chillers RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs Edition of the savings = 1,222 therms Edit Savings = 1,222 therms Swer Savings = 1,222 therms Swer Savings = 1,222 therms Edit Savings = 1,222 therms Edit Savings = 1,222 therms Swer Savings = 1,222 therms Swer Savings = 1,222 therms Edit Savings = 1,222 therms Swer Savings = 1,222 therms										
HVAC system currently operates 247. Uncocupied stability is a minimum average savings of 5% of current usage on chillers RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs Estimated Annual Savings = 1,222 therms Elect Savings = 1,222 therms Elect Savings = - Water Savings = - Water Savings = - Cost Savings (\$) = \$ - Water Cost (\$/kwh) = + Heating Cost (\$/kwh) =										
HVAC system currently operates 247. HVAC system currently operates 247. RCx commissioning will result in a minimum average savings of 5% of current usage on chillers RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs Edition of the savings = 1,222 therms Edit Savings = 1,222 therms Swer Savings = 1,222 therms Swer Savings = 1,222 therms Edit Savings = 1,222 therms Edit Savings = 1,222 therms Swer Savings = 1,222 therms Swer Savings = 1,222 therms Edit Savings = 1,222 therms Swer Savings = 1,222 therms										
HVAC system currently operates 247. Uncocupied stability is a minimum average savings of 5% of current usage on chillers RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs Estimated Annual Savings = 1,222 therms Elect Savings = 1,222 therms Elect Savings = - Water Savings = - Water Savings = - Cost Savings (\$) = \$ - Water Cost (\$/kwh) = + Heating Cost (\$/kwh) =										
HVAC system currently operates 247. Uncocupied stability is a minimum average savings of 5% of current usage on chillers RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs Estimated Annual Savings = 1,222 therms Elect Savings = 1,222 therms Elect Savings = - Water Savings = - Water Savings = - Cost Savings (\$) = \$ - Water Cost (\$/kwh) = + Heating Cost (\$/kwh) =										
HVAC system currently operates 247. Uncocupied stability is a minimum average savings of 5% of current usage on chillers RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs RCx commissioning will result in a minimum average savings of 5% of current usage on fan motor operation of all 4 RTUs Estimated Annual Savings = 1,222 therms Elect Savings = 1,222 therms Elect Savings = - Water Savings = - Water Savings = - Cost Savings (\$) = \$ - Water Cost (\$/kwh) = + Heating Cost (\$/kwh) =										
Gas Savings = 1,222 therms Image: state Modular Building Image: s										
Elect Savings = - Water Savings = - Sewer Savings = - Cost Savings (\$) = \$ Cost Savings (\$) = \$ Luility Information: - Electrical Cost (\$/kwh) = - Heating Cost (\$/kwh) = - Project: State Modular Building Jub #: 10/30/2012 Subject: ECM-2: HVAC Controls Upgrade Bubject: ECM-2: HVAC Controls Upgrade	Estimated A	Annual Savings:								
Water Savings = Sewer Savings = Image: Sewer Sa				therms						
Cost Savings (\$) = \$ -		Water Savings =	-							
Utility Information: Electrical Cost (\$/kwh) = Heating Cost (\$/kwh) = Water Cost (\$/kgal) = Heating Cost (\$/therm) = Sewer Cost (\$/kgal) = Image: Control Cost (\$/therm) = State Modular Building Image: Control Cost (\$/therm) = Job #: Image: Control Cost (\$/therm) = State Modular Building Image: Control Cost (\$/therm) = State Modular Building Image: Control Cost (\$/therm) = Subject: ECM-2: HVAC Controls Upgrade Image: By: SRL		Sewer Savings =								
Electrical Cost (\$/kwh) = Water Cost (\$/kgal) = Heating Cost (\$/kmm) = Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image		Cost Savings (\$) =	\$ -							
Electrical Cost (\$/kwh) = Water Cost (\$/kgal) = Heating Cost (\$/kmm) = Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image: Sewer Cost (\$/kgal) = Image										
Heating Cost (\$/therm) = Sewer Cost (\$/kgal) = Image: Control of the second	Utility Infor		wb) -			Water Cost /	(kaal) –			
C MECHANICAL CONTRACTORS, INC. Subject: ECM-2: HVAC Controls Upgrade By: SRL										
C MECHANICAL CONTRACTORS, INC. Subject: ECM-2: HVAC Controls Upgrade By: SRL		UNIVERSIT	rv.	Dealer f	0 1-1-1-1-1-1-1	D11 - "				
C Bannard Bannard	M	MECHANI	CAL						Date:	
	C	We Build Value		SUDJECT:	ECM-2: HVA	C Controls Up	ograde		By: Page:	SKL

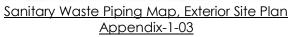

UCM 2.0 HVAC Controls Upgrade - Energy Savings Estimates

Overview:	i i			4							
Notes:	Cx on primary	/ HVAC Syst	lems (HW, Cr	TVV, KIUS)			ĺ		Î.	í í	
		o reduce OA	at night to m	inimum OA at	all times. The	e RTUs current	ly modulate to	o full OA dur	ing these pe	riods.	
Savings Calc	ulations										
			Existing	Proposed	Estimated						
		Annual	Annual	Annual	Annual						
			Heating	Heating	Savings						
	ΟΑΤ	Hours	(the rme)	(therms)	(thormo)						
	57.5	100/S	(therms) 1,528	(unernis) 109	(therms) 1,418						
	52.5	816	2,165	155	2,010						
	47.5	781	2,604	187	2,418						
	42.5 37.5	641 391	2,575 1,835	184 131	2,390 1,704						
	37.5	391 140	1,835	131	1,704						
	27.5	35	209	15	194						
	22.5	15	98	7	91						
	17.5	11	78	6	72						
	12.5 Subtotal	2 3,602	12 11,854	1 849	11 11,005						
	Sustain	5,002	11,004	0-9	11,000						
Assumption	s: m currently or	oratos 24/7									
				y location withi	n the facility						
	nual RTU cfm					43,065	cfm				
	nual RTU cfm		ow Bay RTUs) =		14,725	cfm				
	ofm cupplied t					25%					
% Avg RTU (ofm supplied t	0 HD =				2070					
-		0 HD =				2370			High Bay I	Jnits:	
High Bay Un			te to	80%	OA at ~ 10:0	00pm each nigl	nt		High Bay I Design cfn	Units: n (total 2 HB RTUs) =	57,42
High Bay Un RTU control	its:	ently modula		80% 0%					Design cfn		57,420 75%
High Bay Un RTU control Amount of O	its: dampers curre A provided by	ently modula)0pm each nigl			Design cfn Average V	n (total 2 HB RTUs) = FD Speed =	
High Bay Un RTU control Amount of O Low Bay Uni	its: dampers curre A provided by ts:	ently modula RTUs during	g daytime	0%	OA at ~ 10:0	0pm each nigl 0am each mo	rning		Design cfn Average V Low Bay L	n (total 2 HB RTUs) = FD Speed = Jnits:	75%
High Bay Un RTU control Amount of O Low Bay Uni RTU control	its: dampers curre A provided by	ently modula RTUs during ently modula	g daytime ite to		OA at ~ 10:0 OA at ~ 10:0)0pm each nigl	rning nt		Design cfn Average V Low Bay L Design cfn	n (total 2 HB RTUs) = FD Speed =	75%
High Bay Un RTU control Amount of O Low Bay Uni RTU control Amount of O	its: dampers curre A provided by ts: dampers curre A provided by	ently modula RTUs during ently modula RTUs during	g daytime ite to g daytime	0% 40%	OA at ~ 10:0 OA at ~ 10:0	0pm each nigl 0am each mo 0pm each nigl 0am each mo	ning nt ning		Design cfn Average V Low Bay L Design cfn	n (total 2 HB RTUs) = FD Speed = Jnits: n (total 2 HB RTUs) =	75% 29,450
High Bay Un RTU control Amount of O Low Bay Uni RTU control Amount of O Average Spa	its: dampers curre A provided by ts: dampers curre A provided by ce Temperatu	ently modula RTUs during ently modula RTUs during ire (heating)	g daytime ite to g daytime	0% 40%	OA at ~ 10:0 OA at ~ 10:0	0pm each nigl 0am each mo 0pm each nigl 0am each mo 72	ning nt ning		Design cfn Average V Low Bay L Design cfn	n (total 2 HB RTUs) = FD Speed = Jnits: n (total 2 HB RTUs) =	75% 29,450
High Bay Un RTU control Amount of O Low Bay Uni RTU control Amount of O Average Spa	its: dampers curre A provided by ts: dampers curre A provided by	ently modula RTUs during ently modula RTUs during ire (heating)	g daytime ite to g daytime	0% 40%	OA at ~ 10:0 OA at ~ 10:0	0pm each nigl 0am each mo 0pm each nigl 0am each mo	ning nt ning		Design cfn Average V Low Bay L Design cfn	n (total 2 HB RTUs) = FD Speed = Jnits: n (total 2 HB RTUs) =	75% 29,450
High Bay Un RTU control Amount of O Low Bay Uni RTU control Amount of O Average Spa Heating Syst	its: dampers curre A provided by ts: dampers curre A provided by ce Temperatu	ently modula RTUs during ently modula RTUs during ire (heating) r =	g daytime ite to g daytime =	0% 40%	OA at ~ 10:0 OA at ~ 10:0 OA at ~ 10:0	0pm each nigl 0am each mo 0pm each nigl 0am each mo 72	ning nt ming F		Design cfm Average V Low Bay L Design cfm Average V	n (total 2 HB RTUs) = FD Speed = Jnits: n (total 2 HB RTUs) =	75% 29,450 50%
High Bay Un RTU control Amount of O Low Bay Uni RTU control Amount of O Average Spa Heating Syst	its: dampers curre A provided by ts: dampers curre A provided by ce Temperatu tem Efficiency	ently modula RTUs during ently modula RTUs during ire (heating) r =	g daytime ite to g daytime =	0% 40% 0%	OA at ~ 10:0 OA at ~ 10:0 OA at ~ 10:0	0pm each nigl 00am each mo 0pm each nigl 00am each mo 72 80%	ning nt ming F		Design cfm Average V Low Bay L Design cfm Average V	n (total 2 HB RTUs) = FD Speed = Juits: n (total 2 HB RTUs) = FD Speed =	75% 29,450 50%
High Bay Un RTU control Amount of O Low Bay Uni RTU control Amount of O Average Spa Heating Syst RTU control	its: dampers curre A provided by ts: dampers curre A provided by ce Temperatu tem Efficiency dampers prop	ently modula RTUs during ently modula RTUs during rre (heating) / =	g daytime ite to g daytime =	0% 40% 0%	OA at ~ 10:0 OA at ~ 10:0 OA at ~ 10:0	0pm each nigl 00am each mo 0pm each nigl 00am each mo 72 80%	ning nt ming F		Design cfm Average V Low Bay L Design cfm Average V	n (total 2 HB RTUs) = FD Speed = Juits: n (total 2 HB RTUs) = FD Speed =	29,450
High Bay Un RTU control Amount of O Low Bay Uni RTU control Amount of O Average Spa Heating Syst RTU control	its: dampers curre A provided by ts: dampers curre A provided by ce Temperatu tem Efficiency	ently modula RTUs during ently modula RTUs during rre (heating) / =	g daytime ite to g daytime =	0% 40% 0%	OA at ~ 10:0 OA at ~ 10:0 OA at ~ 10:0	0pm each nigl 00am each mo 0pm each nigl 00am each mo 72 80%	ning nt ming F		Design cfm Average V Low Bay L Design cfm Average V	n (total 2 HB RTUs) = FD Speed = Juits: n (total 2 HB RTUs) = FD Speed =	75% 29,450 50%
High Bay Un RTU control Amount of O Low Bay Uni RTU control Amount of O Average Spa Heating Syst RTU control	its: dampers curre A provided by ts: dampers curre A provided by ce Temperatu tem Efficiency dampers prop dampers prop	ently modula RTUs during ently modula RTUs during ire (heating) / = osed to mod gs: s =	g daytime te to g daytime = lulate to	0% 40% 0%	OA at ~ 10:0 OA at ~ 10:0 OA at ~ 10:0	0pm each nigl 00am each mo 0pm each nigl 00am each mo 72 80%	ning nt ming F		Design cfm Average V Low Bay L Design cfm Average V	n (total 2 HB RTUs) = FD Speed = Juits: n (total 2 HB RTUs) = FD Speed =	75% 29,450 50%
High Bay Un RTU control Amount of O Low Bay Uni RTU control Amount of O Average Spa Heating Syst RTU control	its: dampers curre A provided by ts: dampers curre A provided by ce Temperatu tem Efficiency dampers prop nnual Savin Gas Saving Elect Savin	ently modula RTUs during ently modula RTUs during rre (heating) / = osed to mod gs: s = gs =	g daytime te to g daytime = lulate to	0% 40% 0% 5%	OA at ~ 10:0 OA at ~ 10:0 OA at ~ 10:0	0pm each nigl 00am each mo 0pm each nigl 00am each mo 72 80%	ning nt ming F		Design cfm Average V Low Bay L Design cfm Average V	n (total 2 HB RTUs) = FD Speed = Juits: n (total 2 HB RTUs) = FD Speed =	75% 29,450 50%
High Bay Un RTU control Amount of O Low Bay Uni RTU control Amount of O Average Spa Heating Syst RTU control	its: dampers curre A provided by ts: dampers curre A provided by ce Temperatu tem Efficiency dampers prop annual Saving Gas Saving Elect Savin Water Savi	ently modula RTUs during ently modula RTUs during are (heating) r = oosed to mod gs: s = gs = ngs = ngs =	g daytime te to g daytime = lulate to	0% 40% 0% 5%	OA at ~ 10:0 OA at ~ 10:0 OA at ~ 10:0	0pm each nigl 00am each mo 0pm each nigl 00am each mo 72 80%	ning nt ming F		Design cfm Average V Low Bay L Design cfm Average V	n (total 2 HB RTUs) = FD Speed = Juits: n (total 2 HB RTUs) = FD Speed =	75% 29,450 50%
High Bay Un RTU control Amount of O Low Bay Uni RTU control Amount of O Average Spa Heating Syst RTU control	its: dampers curre A provided by ts: dampers curre A provided by ce Temperatu tem Efficiency dampers prop nnual Savin Gas Saving Elect Savin	ently modula RTUs during ently modula RTUs during are (heating) r = oosed to mod gs: s = gs = ngs = ngs =	g daytime te to g daytime = lulate to	0% 40% 0% 5%	OA at ~ 10:0 OA at ~ 10:0 OA at ~ 10:0	0pm each nigl 00am each mo 0pm each nigl 00am each mo 72 80%	ning nt ming F		Design cfm Average V Low Bay L Design cfm Average V	n (total 2 HB RTUs) = FD Speed = Juits: n (total 2 HB RTUs) = FD Speed =	75% 29,450 50%
High Bay Un RTU control Amount of O Low Bay Uni RTU control Amount of O Average Spa Heating Syst RTU control	its: dampers curre A provided by ts: dampers curre A provided by ce Temperatu tem Efficiency dampers prop nnual Savin Gas Saving Elect Savin Water Savi Sewer Savi	ently modula RTUs during ently modula RTUs during rre (heating) / = oosed to mod gs: s = gs = ngs = ings = ings =	g daytime te to g daytime = tulate to 11,005	0% 40% 0% 5%	OA at ~ 10:0 OA at ~ 10:0 OA at ~ 10:0	0pm each nigl 00am each mo 0pm each nigl 00am each mo 72 80%	ning nt ming F		Design cfm Average V Low Bay L Design cfm Average V	n (total 2 HB RTUs) = FD Speed = Juits: n (total 2 HB RTUs) = FD Speed =	75% 29,450 50%
High Bay Un RTU control Amount of O Low Bay Uni RTU control Amount of O Average Spa Heating Syst RTU control	its: dampers curre A provided by ts: dampers curre A provided by ce Temperatu tem Efficiency dampers prop annual Saving Gas Saving Elect Savin Water Savi	ently modula RTUs during ently modula RTUs during rre (heating) / = oosed to mod gs: s = gs = ngs = ings = ings =	g daytime te to g daytime = lulate to	0% 40% 0% 5%	OA at ~ 10:0 OA at ~ 10:0 OA at ~ 10:0	0pm each nigl 00am each mo 0pm each nigl 00am each mo 72 80%	ning nt ming F		Design cfm Average V Low Bay L Design cfm Average V	n (total 2 HB RTUs) = FD Speed = Juits: n (total 2 HB RTUs) = FD Speed =	75% 29,45 50%
High Bay Un RTU control Amount of O Low Bay Uni RTU control Amount of O Average Spa Heating Syst	its: dampers curre A provided by ts: dampers curre A provided by ce Temperatu tem Efficiency dampers prop nnual Savin Gas Saving Elect Savin Water Savi Sewer Savi	ently modula RTUs during ently modula RTUs during rre (heating) / = oosed to mod gs: s = gs = ngs = ings = ings =	g daytime te to g daytime = tulate to 11,005	0% 40% 0% 5%	OA at ~ 10:0 OA at ~ 10:0 OA at ~ 10:0	0pm each nigl 00am each mo 0pm each nigl 00am each mo 72 80%	ning nt ming F		Design cfm Average V Low Bay L Design cfm Average V	n (total 2 HB RTUs) = FD Speed = Juits: n (total 2 HB RTUs) = FD Speed =	75% 29,45 50%
High Bay Un RTU control Amount of O Low Bay Uni RTU control Amount of O Average Spa Heating Syst RTU control	its: dampers curre A provided by ts: dampers curre A provided by ce Temperatu tem Efficiency dampers prop nnual Savin Gas Saving Elect Savin Water Savi Sewer Savi	ently modula RTUs during ently modula RTUs during rre (heating) / = oosed to mod gs: s = gs = ngs = ings = ings =	g daytime te to g daytime = tulate to 11,005	0% 40% 0% 5%	OA at ~ 10:0 OA at ~ 10:0 OA at ~ 10:0	0pm each nigl 00am each mo 0pm each nigl 00am each mo 72 80%	ning nt ming F		Design cfm Average V Low Bay L Design cfm Average V	n (total 2 HB RTUs) = FD Speed = Juits: n (total 2 HB RTUs) = FD Speed =	75% 29,45 50%
High Bay Un RTU control Amount of O Low Bay Uni RTU control Amount of O Average Spa Heating Syst RTU control	its: dampers curre A provided by ts: dampers curre A provided by ce Temperatu tem Efficiency dampers prop nnual Savin Gas Saving Elect Savin Water Savi Sewer Savi	ently modula RTUs during ently modula RTUs during rre (heating) / = oosed to mod gs: s = gs = ngs = ings = ings =	g daytime te to g daytime = tulate to 11,005	0% 40% 0% 5%	OA at ~ 10:0 OA at ~ 10:0 OA at ~ 10:0	0pm each nigl 00am each mo 0pm each nigl 00am each mo 72 80%	ning nt ming F		Design cfm Average V Low Bay L Design cfm Average V	n (total 2 HB RTUs) = FD Speed = Juits: n (total 2 HB RTUs) = FD Speed =	75% 29,45 50%
High Bay Un RTU control Amount of O Low Bay Uni RTU control Amount of O Average Spa Heating Syst RTU control Estimated A	its: dampers curre A provided by ts: dampers curre A provided by ce Temperatu tem Efficiency dampers prop dampers prop dampers prop Elect Saving Elect Saving Sewer Savi Cost Saving	ently modula RTUs during ently modula RTUs during rre (heating) / = oosed to mod gs: s = gs = ngs = ings = ings =	g daytime te to g daytime = tulate to 11,005	0% 40% 0% 5%	OA at ~ 10:0 OA at ~ 10:0 OA at ~ 10:0	0pm each nigl 00am each mo 0pm each nigl 00am each mo 72 80%	ning nt ming F	- - - -	Design cfm Average V Low Bay L Design cfm Average V	n (total 2 HB RTUs) = FD Speed = Juits: n (total 2 HB RTUs) = FD Speed =	75% 29,45 50%
High Bay Un RTU control Amount of O Low Bay Uni RTU control Amount of O Average Spa Heating Syst RTU control Estimated A	its: dampers curre A provided by ts: dampers curre A provided by ce Temperatu tem Efficiency dampers prop dampers prop dampers prop Elect Saving Elect Saving Sewer Savi Cost Saving	ently modula RTUs during ently modula RTUs during ire (heating) / = osed to mod gs: s = gs = ngs = ings = ings = ings = gs (\$) =	g daytime te to g daytime = lulate to 11,005 \$ -	0% 40% 0% 5%	OA at ~ 10:0 OA at ~ 10:0 OA at ~ 10:0	0pm each nigl 00am each mo 0pm each nigl 00am each mo 72 80%	ning ning F ods (night)		Design cfm Average V Low Bay L Design cfm Average V	n (total 2 HB RTUs) = FD Speed = Juits: n (total 2 HB RTUs) = FD Speed =	75% 29,45 50%
High Bay Un RTU control Amount of O Low Bay Uni RTU control Amount of O Average Spa Heating Syst RTU control Estimated A	its: dampers curre A provided by ts: dampers curre A provided by ce Temperatu tem Efficiency dampers prop dampers prop dampers prop Gas Saving Elect Savin Water Savi Sewer Savi	ently modula RTUs during ently modula RTUs during ire (heating) r = osed to mod gs: is = gs = ngs = ings = ings = ings = ss (\$) =	g daytime te to g daytime = tulate to 11,005 \$ -	0% 40% 0% 5%	OA at ~ 10:0 OA at ~ 10:0 OA at ~ 10:0	0pm each nig 0am each mo 0pm each nig 0am each mo 72 80% 0cccupied perio	ning nt ming F ods (night)		Design cfm Average V Low Bay L Design cfm Average V	n (total 2 HB RTUs) = FD Speed = Juits: n (total 2 HB RTUs) = FD Speed =	75% 29,45 50%
High Bay Un RTU control Amount of O Low Bay Uni RTU control Amount of O Average Spa Heating Syst RTU control Estimated A	its: dampers curre A provided by ts: dampers curre A provided by ce Temperatu tem Efficiency dampers prop dampers prop dampers prop Gas Saving Elect Savin Water Savi Sewer Savi Cost Saving	ently modula RTUs during ently modula RTUs during ire (heating) r = osed to mod gs: is = gs = ngs = ings = ings = ings = ss (\$) =	g daytime te to g daytime = tulate to 11,005 \$ -	0% 40% 0% 5%	OA at ~ 10:0 OA at ~ 10:0 OA at ~ 10:0	0pm each nig 0am each mo 0pm each nig 0am each mo 72 80% 0cccupied perio	ning nt ming F ods (night)		Design cfm Average V Low Bay L Design cfm Average V	n (total 2 HB RTUs) = FD Speed = Juits: n (total 2 HB RTUs) = FD Speed =	75% 29,45 50%
High Bay Un RTU control Amount of O Low Bay Uni RTU control Amount of O Average Spa Heating Syst RTU control	its: dampers curre A provided by ts: dampers curre A provided by ce Temperatu tem Efficiency dampers prop dampers prop dampers prop dampers prop dampers prop dampers prop cost Saving Sewer Savi Cost Saving Elect Saving Cost Saving	ently modula RTUs during ently modula RTUs during tre (heating) r = osed to mod gs: s = gs = ngs = ngs = ings = ings = js (\$) = pst (\$/kwh) = t (\$/therm) =	g daytime te to g daytime = tulate to 11,005 \$ -	0% 40% 0% 5% therms	OA at ~ 10:0 OA at ~ 10:0 OA at ~ 10:0 OA during ur	0pm each nigl 0am each mo 0pm each nigl 0am each mo 72 80% noccupied perio sever Cost (S Sewer Cost (S	ning nt ming F ods (night)		Design cfm Average V Low Bay L Design cfm Average V	n (total 2 HB RTUs) = FD Speed = Jnits: n (total 2 HB RTUs) = FD Speed = Design OA (all 4 RTUs) = Design OA (all 4 RTUs) =	75% 29,450 50%
High Bay Un RTU control Amount of O Low Bay Uni RTU control Amount of O Average Spa Heating Syst RTU control Estimated A	its: dampers curre A provided by ts: dampers curre A provided by ce Temperatu tem Efficiency dampers prop dampers prop dampers prop dampers prop dampers prop dampers prop cost Saving Elect Savin Sewer Savi Cost Saving Electrical Co Heating Cos	ently modula RTUs during ently modula RTUs during tre (heating) r = osed to mod gs: is = gs = ngs = ings = ings = ings = ings = ings (\$) = Dost (\$/kwh) = t (\$/therm) = ESITY	g daytime	0% 40% 0% 5%	OA at ~ 10:0 OA at ~ 10:0 OA at ~ 10:0	0pm each nigl 0am each mo 0pm each nigl 0am each mo 72 80% noccupied perio sever Cost (S Sewer Cost (S	ning nt ming F ods (night)		Design cfm Average V Low Bay L Design cfm Average V	n (total 2 HB RTUs) = FD Speed = Inits: n (total 2 HB RTUs) = FD Speed = Design OA (all 4 RTUs) = Cesign OA (all 4 RTUs) =	75% 29,450 50% 10,700
High Bay Un RTU control Amount of O Low Bay Uni RTU control Amount of O Average Spa Heating Syst RTU control Estimated A	its: dampers curre A provided by ts: dampers curre A provided by ce Temperatu tem Efficiency dampers prop dampers prop dampers prop dampers prop dampers prop dampers prop dampers prop cost Saving Elect Savin Sewer Savi Cost Saving Electrical Co Heating Cos	ently modula RTUs during ently modula RTUs during tre (heating) r = osed to mod gs: s = gs = ngs = ngs = ings = ings = js (\$) = pst (\$/kwh) = t (\$/therm) =	g daytime	0% 40% 0% 5% therms	OA at ~ 10:0 OA at ~ 10:0 OA at ~ 10:0 OA during ur OA during ur State Modul	0pm each nigl 0am each mo 0pm each nigl 0am each mo 72 80% noccupied perio sever Cost (S Sewer Cost (S	ning nt ming F ods (night) S/kgal) = S/kgal) =	ing	Design cfm Average V Low Bay L Design cfm Average V	n (total 2 HB RTUs) = FD Speed = Inits: n (total 2 HB RTUs) = FD Speed = Design OA (all 4 RTUs) = Cesign OA (all 4 RTUs) =	75% 29,45 50%


	avings Estimate								
Overview:			ι						
mplement R	Cx on primary HVAC sys	stems (HW, C	HW, RTUs)						
Notes:									
Savings ass	ociated with main RTU av	verage fan spee	ed reduction & I	redultina redu	ction in chiller o	operation.			
Savings Calo									
			Baseline (Operation Annual		Annual S	avings		
			Annual kWh	Therms	% Savings	kWh	Therms		
	RTU Fans		547,901		5%	27,395	-		
	Chillers		105,000		5%	5,250	-		
	Quintatal		050.004			22.045			
	Subtotal		652,901			32,645			
Assumption	e.								
HVAC syste	m currently operates 24/								
	setback is not currently o ssioning will result in a mi				ago on chillors				
	ssioning will result in a mi								
	· · · · · · · · · · · · · · · · · · ·	inininani averag	e savings of on		sage on lan mo	tor operation o	rali 4 RTUS		
					sage on ian mo	tor operation o	fall 4 RTUS		
					sage on ian mo	tor operation o	fail 4 RTUS		
					sage on lan mo	tor operation o	fail 4 KTUS		
					age on ian mo	tor operation o			
						tor operation o			
						tor operation o			
						tor operation o			
						tor operation o			
Estimated A	Nnual Savings:					tor operation o			
Estimated A	Annual Savings:					tor operation o			
Estimated A	Annual Savings: Gas Savings = Elect Savings =	32,645	therms			tor operation o			
Estimated A	Annual Savings: Gas Savings = Elect Savings = Water Savings =					tor operation o			
Estimated A	Annual Savings: Gas Savings = Elect Savings =					tor operation o			
Estimated A	Annual Savings: Gas Savings = Elect Savings = Water Savings = Sewer Savings =	32,645				tor operation o			
Ξstimated A	Annual Savings: Gas Savings = Elect Savings = Water Savings =					tor operation o			
Estimated A	Annual Savings: Gas Savings = Elect Savings = Water Savings = Sewer Savings =	32,645				tor operation o			
Estimated A	Annual Savings: Gas Savings = Elect Savings = Water Savings = Sewer Savings =	32,645				tor operation o			
	Annual Savings: Gas Savings = Elect Savings = Water Savings = Sewer Savings = Cost Savings (\$) =	32,645				tor operation o			
	Annual Savings: Gas Savings = Elect Savings = Water Savings = Sewer Savings = Cost Savings (\$) =	\$ -							
	Annual Savings: Gas Savings = Elect Savings = Water Savings = Sewer Savings = Cost Savings (\$) =	32,645			Water Cost (\$ Sewer Cost (\$	/kgal) =			
	Annual Savings: Gas Savings = Elect Savings = Water Savings = Sewer Savings = Cost Savings (\$) = mation: Electrical Cost (\$/kwh)	32,645			Water Cost (\$	/kgal) =			
Estimated A Utility Inform	Annual Savings: Gas Savings = Elect Savings = Water Savings = Sewer Savings (\$) = Cost Savings (\$) = Electrical Cost (\$/kwh) Heating Cost (\$/therm) =	\$ - = = =	therms		Water Cost (\$ Sewer Cost (\$	/kgal) =			
	Annual Savings: Gas Savings = Elect Savings = Water Savings = Sewer Savings = Cost Savings (\$) = mation: Electrical Cost (\$/kwh) Heating Cost (\$/therm) : UNIVERSITY MECHANICA		therms	State Modul	Water Cost (\$ Sewer Cost (\$ ar Building	/kgal) = /kgal) =			10/30/201
	Annual Savings: Gas Savings = Elect Savings = Water Savings = Sewer Savings (\$) = Cost Savings (\$) = mation: Electrical Cost (\$/kwh) Heating Cost (\$/therm) :		therms	State Modul	Water Cost (\$ Sewer Cost (\$	/kgal) = /kgal) =			10/30/201 SRL

Baseline Adjustment Calculation Associated with the Implementation of UCM 3.0 (Increased ventilation air during occupied periods)


	Adjustmne	et									
Overview:											
I' A .I'.		deffere en d			the state of the state of the						
	ustment calc	ulations appl	ied to allow to	or required vent	liation air durir	ng occupied no	ours				
Notes:											
Modify OA/R	A damper op	eration & RA	fan speed to	provide minim	um OA during	occupied oper	ation				
Savings Calc					Ŭ						
			Existing	Proposed	Estimated				Existing	Proposed	Estimated
		Annual	Annual	Annual	Baseline			Annual	Annual	Annual	Baseline
			Heating	Heating	Adjustment				Cooling	Cooling	Adjustmen
	OAT	Hours	(therms)	(therms)	(therms)		OAT	Hours	kWh	kWh	kWh
	57.5	650	-	359	359		97.5	1	-	8,848	8,848
	52.5	662	-	492	492		92.5	4	-	7,236	7,236
	47.5	686	-	641	641		87.5	20	-	5,676	5,676
	42.5	516	-	580	580		82.5	64 129	-	2,891	2,891
	37.5 32.5	266 74	-	350 111	350		77.5 72.5	128 250	-	781 20	781
	27.5	23	-	38	38		67.5	412	-	(54)	(54
	22.5	11	-	20	20		62.5	607	-	(53)	(53
	17.5	5	-	9	9					()	
	12.5	2	-	3	3						
	Subtotal	2,893	-	2,603	2,603		Subtotal	1,484	-	25,344	25,344
.											
Assumption: HVAC system		nerates 24/7									
				y location with	in the facility						
		n (total of all 4			, ,	56,466	cfm		Design cfn	n (total all 4 RTUs) =	86,870
% Avg RTU d	fm supplied					25%				FD Speed =	65%
RTU control o	dampers curr			0%		0am each mo			Minimum [Design OA (all 4 RTUs) =	10,700
RTU control o	dampers curr			0% 80%		0am each moi 0pm each nigl			Minimum I	Design OA (all 4 RTUs) =	10,700
RTU control o RTU control o	dampers curr dampers curr	ently modula	te to			0pm each nigl	nt		Minimum I	Design OA (all 4 RTUs) =	10,700
RTU control o RTU control o Average Space	dampers curr dampers curr ce Temperatu	ently modula ure (heating)	te to			0pm each nigl 72	nt		Minimum I	Design OA (all 4 RTUs) =	10,700
RTU control o RTU control o Average Space	dampers curr dampers curr ce Temperatu	ently modula ure (heating)	te to			0pm each nigl	nt		Minimum I	Design OA (all 4 RTUs) =	10,700
RTU control of RTU control of Average Spar Heating Syst Estimated ch	dampers curr dampers curr ce Temperatu em Efficienc	rently modula ure (heating) y = y =	te to =			0pm each nig 72 80% 0.70	F kW/ton		Minimum I	Design OA (all 4 RTUs) =	10,700
RTU control of RTU control of Average Space Heating Syst Estimated ch Average Space	dampers curr dampers curr ce Temperatu em Efficienc iller efficienc ce Temperatu	rently modula ure (heating) y = y = ure (cooling) =	te to =			0pm each nigl 72 80% 0.70 72	F kW/ton		Minimum I	Design OA (all 4 RTUs) =	10,700
RTU control of RTU control of Average Space Heating Syst Estimated ch Average Space	dampers curr dampers curr ce Temperatu em Efficienc iller efficienc ce Temperatu	rently modula ure (heating) y = y = ure (cooling) =	te to =			0pm each nig 72 80% 0.70	F kW/ton		Minimum I	Design OA (all 4 RTUs) =	10,700
RTU control of RTU control of Average Spar Heating Syst Estimated ch Average Spar % Avg RTU c	dampers curr dampers curr ce Temperatu em Efficienc niller efficienc ce Temperatu fm supplied	rently modula ure (heating) y = y = ure (cooling) =	te to =			0pm each nigl 72 80% 0.70 72	F kW/ton		Minimum I	Design OA (all 4 RTUs) =	10,700
RTU control of RTU control of Average Spar Heating Syst Estimated ch Average Spar % Avg RTU of Proposed Op	dampers curr dampers curr ce Temperatu em Efficienc iiller efficienc ce Temperatu fm supplied peration:	ently modula ure (heating) : y = y = ure (cooling) : to CD =	= = =	80%	OA at ~ 10:0	0pm each nigl 72 80% 0.70 72 75%	F kW/ton F		Minimum I	Design OA (all 4 RTUs) =	10,700
RTU control of RTU control of Average Spar Heating Syst Estimated ch Average Spar % Avg RTU of Proposed Op RTU control of	dampers curr dampers curr ce Temperatu em Efficienc iiller efficienc cfm supplied peration: dampers prop	ently modula ure (heating) : y = y = ure (cooling) : to CD = boosed to mod	te to = = lulate to		OA at ~ 10:0 OA during ur	0pm each nigl 72 80% 0.70 72 75% occupied period	F kW/ton F):00pm)	Minimum I	Design OA (all 4 RTUs) =	10,700
RTU control of RTU control of Average Spar Heating Syst Estimated ch Average Spar % Avg RTU c	dampers curr dampers curr ce Temperatu em Efficienc ce Temperatu fm supplied eration: dampers prop dampers prop	ently modula ure (heating) : y = y = ure (cooling) : to CD = bosed to mod bosed to mod	te to = = lulate to	80%	OA at ~ 10:0 OA during ur	0pm each nigl 72 80% 0.70 72 75% occupied period	F kW/ton F):00pm)	Minimum I	Design OA (all 4 RTUs) =	10,700
RTU control of RTU control of Average Spar Heating Syst Estimated ch Average Spar % Avg RTU of Proposed Op RTU control of RTU control of	dampers curr dampers curr ce Temperatu em Efficienc ce Temperatu fm supplied veration: dampers prop dampers prop aseline Adju	ently modula ure (heating) : y = y = ure (cooling) : to CD = boosed to mod ustment:	te to = = lulate to lulate to	80%	OA at ~ 10:0 OA during ur	0pm each nigl 72 80% 0.70 72 75% occupied period	F kW/ton F	D:00pm)		Design OA (all 4 RTUs) =	10,700
RTU control of RTU control of Average Spar Heating Syst Estimated ch Average Spar % Avg RTU of Proposed Op RTU control of RTU control of	dampers curr dampers curr ce Temperatu em Efficienc ce Temperatu fm supplied veration: dampers prop dampers prop aseline Adji Gas Adjust	ently modula ure (heating) : y = y = ure (cooling) : to CD = coosed to mod ustment: ment =	te to = = lulate to lulate to 2,603	80%	OA at ~ 10:0 OA during ur	0pm each nigl 72 80% 0.70 72 75% occupied period	F kW/ton F	0:00pm)	Minimum (Design OA (all 4 RTUs) =	10,700
RTU control of RTU control of Average Spar Heating Syst Estimated ch Average Spar % Avg RTU of Proposed Op RTU control of RTU control of	dampers curr dampers curr ce Temperatu em Efficienc ce Temperatu fm supplied veration: dampers prop dampers prop aseline Adju	ently modula ure (heating) : y = y = ure (cooling) : to CD = coosed to mod ustment: ment =	te to = = lulate to lulate to	80%	OA at ~ 10:0 OA during ur	0pm each nigl 72 80% 0.70 72 75% occupied period	F kW/ton F):00pm)	Minimum (Design OA (all 4 RTUs) =	10,700
RTU control of RTU control of Average Spar Heating Syst Estimated ch Average Spar % Avg RTU of Proposed Op RTU control of RTU control of	dampers curr dampers curr ce Temperatu em Efficienc ce Temperatu fm supplied veration: dampers prop dampers prop aseline Adji Gas Adjust	ently modula ure (heating) : y = y = ure (cooling) : to CD = coosed to mod ustment: ment =	te to = = lulate to lulate to 2,603	80%	OA at ~ 10:0 OA during ur	0pm each nigl 72 80% 0.70 72 75% occupied period	F kW/ton F):00pm)		Design OA (all 4 RTUs) =	10,700
RTU control of RTU control of Average Spar Heating Syst Estimated ch Average Spar % Avg RTU of Proposed Op RTU control of RTU control of	dampers curr dampers curr ce Temperatu em Efficienc ce Temperatu fm supplied veration: dampers prop dampers prop aseline Adji Gas Adjust	ently modula ure (heating) : y = y = ure (cooling) : to CD = coosed to mod ustment: ment =	te to = = lulate to lulate to 2,603	80%	OA at ~ 10:0 OA during ur	0pm each nigl 72 80% 0.70 72 75% occupied period	F kW/ton F	0:00pm)		Design OA (all 4 RTUs) =	10,700
RTU control of RTU control of Average Spar Heating Syst Estimated ch Average Spar % Avg RTU of Proposed Op RTU control of RTU control of	dampers curr dampers curr ce Temperatu em Efficienc ce Temperatu fm supplied veration: dampers prop dampers prop aseline Adji Gas Adjust	ently modula ure (heating) : y = y = ure (cooling) : to CD = coosed to mod ustment: ment =	te to = = lulate to lulate to 2,603	80%	OA at ~ 10:0 OA during ur	0pm each nigl 72 80% 0.70 72 75% occupied period	F kW/ton F	D:00pm)		Design OA (all 4 RTUs) =	10,700
RTU control of RTU control of Average Spar Heating Syst Estimated ch Average Spar % Avg RTU control of RTU control of RTU control of	dampers curr dampers curr ce Temperatu em Efficienc ce Temperatu fm supplied veration: dampers prop dampers prop aseline Adji Gas Adjust	ently modula ure (heating) : y = y = ure (cooling) : to CD = coosed to mod ustment: ment =	te to = = lulate to lulate to 2,603	80%	OA at ~ 10:0 OA during ur	0pm each nigl 72 80% 0.70 72 75% occupied period	F kW/ton F	D:00pm)		Design OA (all 4 RTUs) =	10,700
RTU control of RTU control of Average Spar Heating Syst Estimated ch Average Spar % Avg RTU control of RTU control of RTU control of	dampers curr dampers curr ce Temperatu em Efficienc ce Temperatu fm supplied veration: dampers prop dampers prop aseline Adji Gas Adjust	ently modula ure (heating) : y = y = ure (cooling) : to CD = coosed to mod ustment: ment =	te to = = lulate to lulate to 2,603	80%	OA at ~ 10:0 OA during ur	0pm each nigl 72 80% 0.70 72 75% occupied period	F kW/ton F	D:00pm)		Design OA (all 4 RTUs) =	10,700
RTU control of RTU control of Average Spar Heating Syst Estimated ch Average Spar % Avg RTU control of RTU control of RTU control of	dampers curr dampers curr ce Temperatu em Efficienc ce Temperatu fm supplied veration: dampers prop dampers prop aseline Adji Gas Adjust	ently modula ure (heating) : y = y = ure (cooling) : to CD = coosed to mod ustment: ment =	te to = ulate to ulate to 2,603	80%	OA at ~ 10:0 OA during ur	0pm each nigl 72 80% 0.70 72 75% occupied period	F kW/ton F):00pm)		Design OA (all 4 RTUs) =	10,700
RTU control of RTU control of Average Spar Heating Syst Estimated ch Average Spar % Avg RTU control of RTU control of RTU control of	dampers curr dampers curr ce Temperatu em Efficienc ce Temperatu fm supplied veration: dampers prop dampers prop aseline Adji Gas Adjust	ently modula ure (heating) : y = y = ure (cooling) : to CD = coosed to mod ustment: ment =	te to = ulate to ulate to 2,603	80%	OA at ~ 10:0 OA during ur	0pm each nigl 72 80% 0.70 72 75% occupied period	F kW/ton F	0:00pm)		Design OA (all 4 RTUs) =	10,700
RTU control of RTU control of Average Spar Heating Syst Estimated ch Average Spar % Avg RTU control of RTU control of RTU control of	dampers curr dampers curr ce Temperatu em Efficienc ce Temperatu fm supplied eration: dampers prop dampers prop aseline Adji Gas Adjust	ently modula ure (heating) : y = y = ure (cooling) : to CD = coosed to mod ustment: ment =	te to = ulate to ulate to 2,603	80%	OA at ~ 10:0 OA during ur	0pm each nigl 72 80% 0.70 72 75% occupied period	F kW/ton F	D:00pm)		Design OA (all 4 RTUs) =	10,700
RTU control of RTU control of Average Spare Heating Syst Estimated ch Average Spare % Avg RTU control of RTU control of Estimated B	dampers curr dampers curr ce Temperatu em Efficiency iller efficiency ce Temperatu fm supplied eration: dampers prop dampers prop aseline Adj Elect Adjust	ently modula ure (heating) : y = y = ure (cooling) : to CD = coosed to mod ustment: ment =	te to = ulate to ulate to 2,603	80%	OA at ~ 10:0 OA during ur	0pm each nigl 72 80% 0.70 72 75% occupied period	F kW/ton F	0:00pm)		Design OA (all 4 RTUs) =	
RTU control of RTU control of Average Spare Heating Syst Estimated ch Average Spare % Avg RTU control of RTU control of Estimated B	dampers curr dampers curr ce Temperatu em Efficienc ce Temperatu fm supplied meration: dampers prop aseline Adju Gas Adjust Elect Adjust Elect Adjust	ently modula ure (heating) - y = y = ure (cooling) - to CD = bosed to mod bosed (\$/kwh) =	te to = u ate to u ate to u ate to 2,603 25,344	80%	OA at ~ 10:0 OA during ur	Opm each nigl 72 80% 0.70 72 75% occupied periods	ht F kW/ton F ods (night) 6 (7:00am to 10 () () () () () () () () () () () () ()	D:00pm)		Design OA (all 4 RTUs) =	10,700
RTU control of RTU control of Average Spare Heating Syst Estimated ch Average Spare % Avg RTU control of RTU control of Estimated B	dampers curr dampers curr ce Temperatu em Efficienc ce Temperatu fm supplied meration: dampers prop aseline Adju Gas Adjust Elect Adjust Elect Adjust	ently modula ure (heating) : y = y = to CD = bosed to mod bosed to mod bosed to mod ustment: ment = stment =	te to = u ate to u ate to u ate to 2,603 25,344	80%	OA at ~ 10:0 OA during ur	0pm each nigl 72 80% 0.70 72 75% occupied periods	ht F kW/ton F ods (night) 6 (7:00am to 10 () () () () () () () () () () () () ()	D:00pm)		Design OA (all 4 RTUs) =	
RTU control of RTU control of Average Spaa Heating Syst Estimated ch Average Spaa Average Spaa Average Spaa Avg RTU control of RTU control of Estimated B	dampers curr dampers curr ce Temperatu em Efficienc ce Temperatu fm supplied meration: dampers prop aseline Adju Gas Adjust Elect Adjust Elect Adjust	ently modula ure (heating) - y = y = ure (cooling) - to CD = bosed to mod bosed (\$/kwh) =	te to = u ate to u ate to u ate to 2,603 25,344	80%	OA at ~ 10:0 OA during ur	Opm each nigl 72 80% 0.70 72 75% occupied periods	ht F kW/ton F ods (night) 6 (7:00am to 10 () () () () () () () () () () () () ()	D:00pm)		Design OA (all 4 RTUs) =	
RTU control of RTU control of Average Spare Heating Syst Estimated ch Average Spare % Avg RTU control of RTU control of Estimated B	dampers curr dampers curr ce Temperatu em Efficienc ce Temperatu fm supplied veration: dampers prop aseline Adju Gas Adjust Elect Adjust Elect Adjust Electrical C Heating Cos	ently modula ure (heating) : y = y = to CD = bosed to mod bosed (bosed to mod bosed to mod bosed (bosed to mod bosed to mod bosed to mod bosed (bosed to mod bosed to mod b	te to = u ate to u ate to u ate to 2,603 25,344	80%	OA at ~ 10:0 OA during ur	Opm each nigl 72 80% 0.70 72 75% occupied periods	ht F kW/ton F ods (night) 6 (7:00am to 10 () () () () () () () () () () () () ()	D:00pm)		Design OA (all 4 RTUs) =	10,700
RTU control of RTU control of Average Spare Heating Syst Estimated ch Average Spare % Avg RTU control of RTU control of Estimated B	dampers curr dampers curr ce Temperatu em Efficienc ce Temperatu fm supplied beration: dampers prop aseline Adju Gas Adjust Elect Adjus Elect Adjus	ently modula ure (heating) : y = y = to CD = bosed to mod bosed (bosed to mod bosed to mod b	te to = = ulate to ulate to 2,603 25,344	80%	OA at ~ 10:0 OA during ur	0pm each nigl 72 80% 0.70 72 75% occupied periods occupied periods water Cost (\$ Sewer Cost (\$	ht F kW/ton F ods (night) 6 (7:00am to 10 () () () () () () () () () () () () ()	D:00pm)		Job #:	
RTU control of RTU control of Average Spar Heating Syst Estimated ch Average Spar % Avg RTU of Proposed Op RTU control of RTU control of	dampers curr dampers curr ce Temperatu em Efficienc ce Temperatu fm supplied beration: dampers prop dampers prop daseline Adju Gas Adjust Elect Adjust Elect Adjust Electrical Co Heating Cos	ently modula ure (heating) : y = y = to CD = bosed to mod bosed to	te to	80% 5% 20% therms	OA at ~ 10:0 OA during ur OA during oc State Modula	0pm each nigl 72 80% 0.70 72 75% occupied periods occupied periods water Cost (Sewer Cost	ht F kW/ton F ods (night) 6 (7:00am to 10 (7:00am to 10 (7:00am to 10 (7:00am to 10) (7:00am to			Job #:	10/30/2012
RTU control of RTU control of Average Spau Heating Syst Estimated ch Average Spau % Avg RTU c Proposed Op RTU control of Estimated B	dampers curr dampers curr ce Temperatu em Efficienc ce Temperatu fm supplied beration: dampers prop dampers prop daseline Adju Gas Adjust Elect Adjust Elect Adjust Electrical Co Heating Cos	ently modula ure (heating) : y = y = to CD = bosed to mod bosed (bosed to mod bosed to mod b	te to	80%	OA at ~ 10:0 OA during ur OA during oc State Modula	0pm each nigl 72 80% 0.70 72 75% occupied periods occupied periods water Cost (Sewer Cost	ht F kW/ton F ods (night) 6 (7:00am to 10 () () () () () () () () () () () () ()		Minimum (Job #:	



Sanitary Waste Piping Map, Exterior Site Plan Appendix-1-01

Sanitary Waste Piping Map, Low Bay Appendix-1-02

Project:	
----------	--

Completed by:

Low Seismicity **Building System**

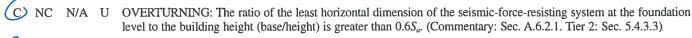
16-150

Location:

Date: _

16.1.2LS LIFE SAFETY BASIC CONFIGURATION CHECKLIST

Note
C - complies
NC - non-compliant
N/A - not applicable
U - unknown


General	
C NC N/A U	LOAD PATH: The structure shall contain a complete, well defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)
C NC N/A U	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 4% of the height of the shorter building. This statement shall not apply for the following building types: W1, W1a, and W2. (Commentary: Sec. A.2.1.2. Tier 2: Sec. 5.4.1.2)
G NC N/A U	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Commentary: Sec. A.2.1.3. Tier 2: Sec. 5.4.1.3)
Building Configurat	ion
C NC N/A U	WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction is not less than 80% of the strength in the adjacent story above. (Commentary: Sec. A2.2.2. Tier 2: Sec. 5.4.2.1)
C NC NA U	SOFT STORY: The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force-resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Commentary: Sec. A.2.2.3. Tier 2: Sec. 5.4.2.2)
C NC N/A U	VERTICAL IRREGULARITIES: All vertical elements in the seismic-force-resisting system are continuous to the foundation. (Commentary: Sec. A.2.2.4. Tier 2: Sec. 5.4.2.3)
C NC N/A U	GEOMETRY: There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Commentary: Sec. A.2.2.5. Tier 2: Sec. 5.4.2.4)
C NC N/A U	MASS: There is no change in effective mass more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Commentary: Sec. A.2.2.6. Tier 2: Sec. 5.4.2.5)
C, NC N/A U	TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Commentary: Sec. A.2.2.7. Tier 2: Sec. 5.4.2.6)
Moderate Seismici	ty: Complete the Following Items in Addition to the Items for Low Seismicity.
Geologic Site Haza	rds
C NC N/A U	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance shall not exist in the foundation soils at denths within 50 ft under the building

seismic performance shall not exist in the foundation soils at depths within 50 ft under the building. (Commentary: Sec. A.6.1.1. Tier 2: 5.4.3.1)

- SLOPE FAILURE: The building site is sufficiently remote from potential earthquake-induced slope failures or N/A U NC rockfalls to be unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: 5.4.3.1)
 - SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not N/A U NC anticipated. (Commentary: Sec. A.6.1.3. Tier 2: 5.4.3.1)

High Seismicity: Complete the Following Items in Addition to the Items for Low and Moderate Seismicity.

Foundation Configuration

TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces N/A U)NC where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Commentary: Sec. A.6.2.2. Tier 2: Sec. 5.4.3.4)

Project:6-150	Location: _
Completed by:	Date:

_____ Date: _____

16.5LS LIFE SAFETY STRUCTURAL CHECKLIST FOR BUILDING TYPES S2: STEEL BRACED FRAMES WITH STIFF DIAPHRAGMS AND S2A: STEEL BRACED FRAMES WITH FLEXIBLE DIAPHRAGMS

Low Seismicity

Seismic-Force-Resisting System

N/A U COLUMN AXIAL STRESS CHECK: The axial stress caused by gravity loads in columns subjected to overturning forces is less than $0.10F_y$. Alternatively, the axial stress caused by overturning forces alone, calculated using the Quick Check procedure of Section 4.5.3.6, is less than $0.30F_y$. (Commentary: Sec. A.3.1.3.2. Tier 2: Sec. 5.5.2.1.3)

N/A U BRACE AXIAL STRESS CHECK: The axial stress in the diagonals, calculated using the Quick Check procedure of Section 4.5.3.4, is less than $0.50F_{y}$. (Commentary: Sec. A.3.3.1.2. Tier 2: Sec. 5.5.4.1)

Connections

NC

C NC N/A U

U TRANSFER TO STEEL FRAMES: Diaphragms are connected for transfer of seismic forces to the steel frames. (Commentary: Sec. A.5.2.2. Tier 2: Sec. 5.7.2)

NC N/A U STEEL COLUMNS: The columns in seismic-force-resisting frames are anchored to the building foundation. (Commentary: Sec. A.5.3.1. Tier 2: Sec. 5.7.3.1)

Moderate Seismicity: Complete the Following Items in Addition to the Items for Low Seismicity.

Seismic-Force-Resisting System

C NC	N/A	U	REDUNDANCY: The number of lines of braced frames in each principal direction is greater than or equal to 2. The number of braced bays in each line is greater than 2. (Commentary: Sec. A.3.3.1.1. Tier 2: Sec. 5.5.1.1)
C NC	N/A	U	CONNECTION STRENGTH: All the brace connections develop the buckling capacity of the diagonals. (Commentary: Sec. A.3.3.1.5. Tier 2: Sec. 5.5.4.4)
CNC	N/A	U	COMPACT MEMBERS: All brace elements meet compact section requirements set forth by AISC 360, Table B4.1. (Commentary: Sec. A.3.3.1.7. Tier 2: Sec. 5.5.4)
C NC	N/A	U	K-BRACING: The bracing system does not include K-braced bays. (Commentary: Sec. A.3.3.2.1. Tier 2: Sec. 5.5.4.6)

High Seismicity: Complete the Following Items in Addition to the Items for Low and Moderate Seismicity.

Seismic-Force-Resisting System

))	NC	N/A	U	COLUMN SPLICES: All column splice details located in braced frames develop 50% of the tensile strength
				of the column. (Commentary: Sec. A.3.3.1.3. Tier 2: Sec. 5.5.4.2)

- NC N/A U SLENDERNESS OF DIAGONALS: All diagonal elements required to carry compression have Kl/r ratios less than 200. (Commentary: Sec. A.3.3.1.4. Tier 2: Sec. 5.5.4.3)
- NC N/A U CONNECTION STRENGTH: All the brace connections develop the yield capacity of the diagonals. (Commentary: Sec. A.3.3.1.5. Tier 2: Sec. 5.5.4.4)
-) NC N/A U COMPACT MEMBERS: All brace elements meet section requirements set forth by AISC 341, Table D1.1, for moderately ductile members. (Commentary: Sec. A.3.3.1.7. Tier 2: Sec. 5.5.4)
 - NC N/A U CHEVRON BRACING: Beams in chevron, or V-braced, bays are capable of resisting the vertical load resulting from the simultaneous yielding and buckling of the brace pairs. (Commentary: Sec. A.3.3.2.3. Tier 2: Sec. 5.5.4.6)
 - N/A U CONCENTRICALLY BRACED FRAME JOINTS: All the diagonal braces shall frame into the beam-column joints concentrically. (Commentary: Sec. A.3.3.2.4. Tier 2: Sec. 5.5.4.8)

Diaphragms (Stiff or Flexible)

C)NC

C

N/A U OPENINGS AT FRAMES: Diaphragm openings immediately adjacent to the braced frames extend less than 25% of the frame length. (Commentary: Sec. A.4.1.5. Tier 2: Sec. 5.6.1.3)

Flexible Diaphragms

~ 10	
	CROSS TIES: There are continuous cross ties between diaphragm chords. (Commentary: Sec. A.4.1.2. Tier 2: Sec. 5.6.1.2)
C NC N/A U	STRAIGHT SHEATHING: All straight sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Commentary: Sec. A.4.2.1. Tier 2: Sec. 5.6.2)
C NC N/A U	SPANS: All wood diaphragms with spans greater than 24 ft consist of wood structural panels or diagonal sheathing. (Commentary: Sec. A.4.2.2. Tier 2: Sec. 5.6.2)
C NC N/A U	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft and aspect ratios less than or equal to 4-to-1. (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2)
C NC N/A U	OTHER DIAPHRAGMS: The diaphragm does not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Commentary: Sec. A.4.7.1. Tier 2: Sec. 5.6.5)

TIER 1 QUICK CHECKS

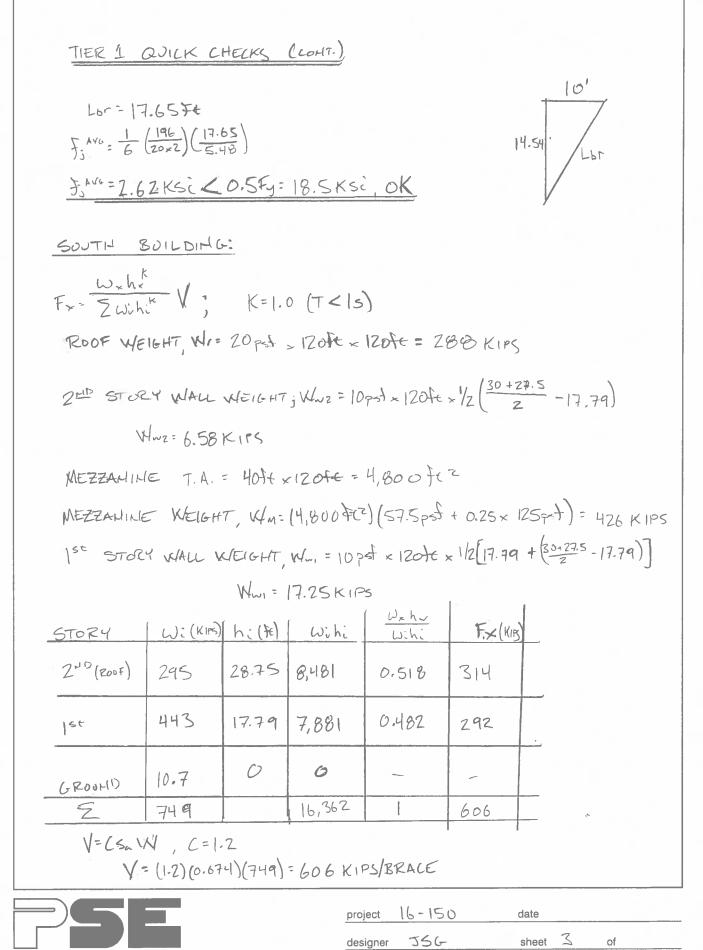
(DLUMM AXIAL STRESS CHECK (WORST-LASE) ROOF LOADS: DLF ZO PSF LLR=ZSPST MEZZAMINE LOADS: PLF ZO PSF + 3"/12"/A+ (150 Pct) = 57.5 PST LLM=125 PST (POSTED) TYP. T.A.= ZOOF2 PMAx (SUJTH) = (ZDL + ZLL)T.A.= 45.5 KIPS PMAx (SUJTH) = (DL2 + LLR)T.A.= 9.0 KIPS SDUTH COLUMN => WIO + 33, A = 9.71 m² HORTH COLUMN => WIO + 33, A = 9.71 m² HORTH COLUMN => WIO + 35, A = 4.43 m² P/A (SUJTH) = 2.03KSi < 0.1 Fy = 5KSi, OK

project 6-150

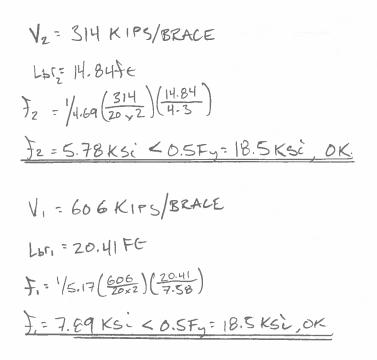
date

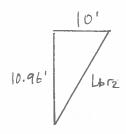
designer JSG

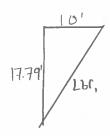
sheet of


TIER 1 QUILK CHECKS (CONT.)				
BRALE AXIAL STEESS CHECK,				
$F_{j}^{ATE} = \frac{1}{M_{S}} \left(\frac{V_{j}}{SNbr} \right) \left(\frac{Lbr}{Abr} \right)$				
Lor: ANG LENGTH OF BRACE = VARIES		TABLE	1-10	
Nor = 2 BRACES/FRAME		d/t	Ms	
5= 2074		14.79 31.24	6.0 3.0	
ALT: SEE TABLE TO RIGHT	_		Ψ r	
V: = SEE BELONY	LOCATION	d/t*		Abr.
Ma = SEE TABLE TO RIGHT	SOUTH, TOP TS GX4x1/4	22	4.691	4.30 M
	50UTH, BOT TS 8x4x3/8	14.33	5.17 7	7.58 INT
	HORTH 6×3×3/8	14	6.0 5	5.481N2
STORY SHEAR FORLES (V;)	* CALWLATED B4.1	PER AISC	360 TABI	.C
NORTH BUILDING:	D7. L			
V=CSaVV				
W= WALL WEIGHT + ROOF WEIGHT	-			
WALL WEIGHT = 10ps = 100 fe = 1/2	<u>15.58+13.5</u>) = Z	7.27 KI	PS	
ROOF WEIGHT = 20=5+ × 100 F2 = 2				
W=ZO7KIPS/BRACE				
Sa= 5xs = 0.674 g (SH.5)				
C = 1.4 (TABLE 4-8)				
V; = 196 KIPS				
	ect 16-150	date		

designer JSG


2


of


sheet

TIER 1 QUICK CHECK (CONTT.)

project	16-150
---------	--------

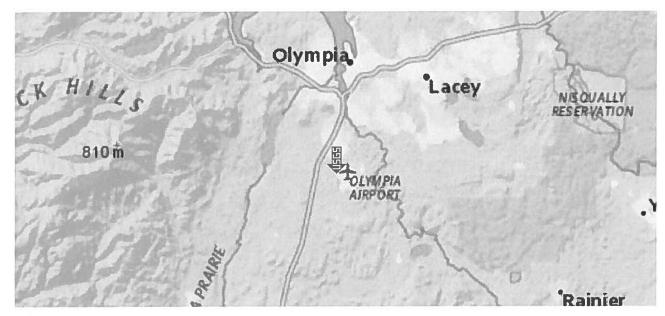
date

designer JSG

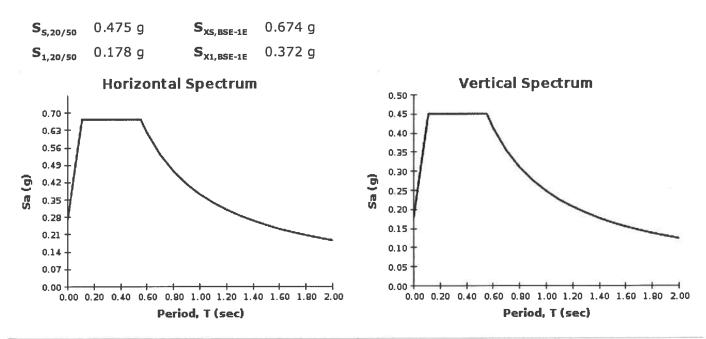
sheet 4

of

USGS Design Maps Summary Report


User-Specified Input

Building Code Reference Document ASCE 41-13 Retrofit Standard, BSE-1E


(which utilizes USGS hazard data available in 2008)

Site Coordinates 46.97832°N, 122.9131°W

Site Soil Classification Site Class D - "Stiff Soil"

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

CONNECTION STRENGTH

TENSION LO	ZGAC		
BRACE	LBR (FE)	ABR (IN2)	FyABR (KIPS)
TS 6x3x 3/8	17.65	5.48	203
TS 6x4x1/4	14.84	4.30	159
TS 8x 4x3/8	20.41	7.58	280

BRACE BUCKLING LOADS

TS 6x3x3/8:

Pn= 42 KIPS (INTERPOLATED, TABLE 4-3, AISC 360)

TS 6x4x1/4:

Pn: 62 KIPS (INTERPOLATED, TABLE 4-3, AISC 360)

TS 8x4x3/8:

Pn = 62 KIPS (INTERPOLATED, TABLE 4-3, AISC 360)

LONHECTION CAPACITIES (BRACE YIELDING)

TS 8×4× 3/8:

(6) 3/4" & BOLTS (A325) PER AS-BUILTS

VEOLITS = (6) 17.9/ 4- 143 KIPS < Fy ABR, H.G.

136×4×1/4:

(4) 3/4" \$ BOLTS (A325)

T = 159 (10.96/14.84) = 117.4 KIPS V = 159 (10/14.84) = 107.1 KIPS ; Frv = 1430.442= 60.6 KSi/BOLT (BEFORE BRALE YIELDS) BY OBSERVATION, BOLTS FAIL IM SHEAR, N. 6.

VEULTS = 95 KIPS

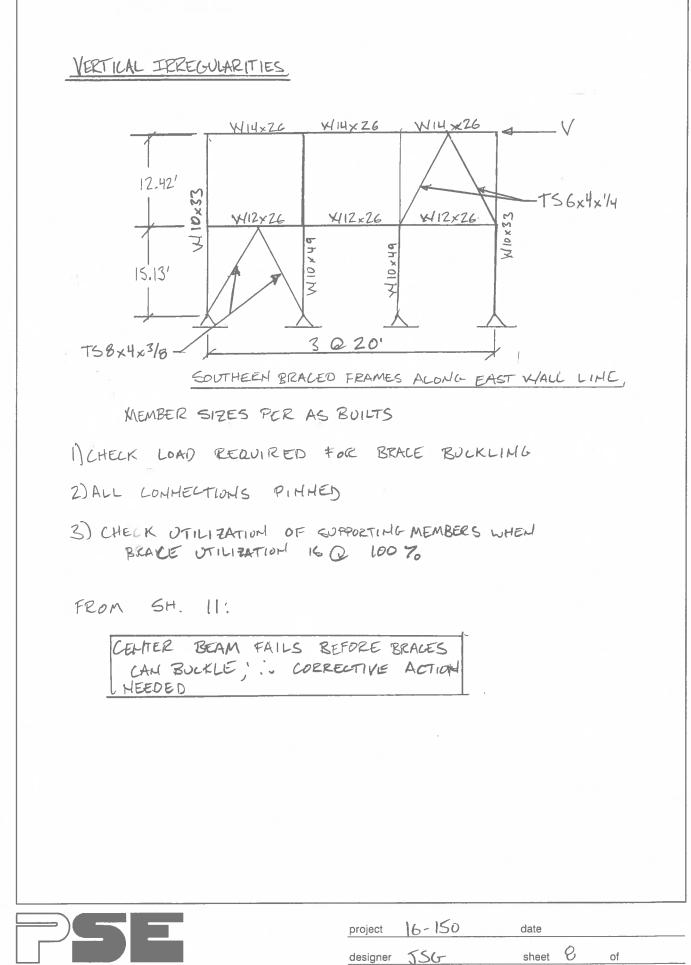
16-150 project date designer JSC-6 sheet of

CONNECTION STREAGTH (LONT.)

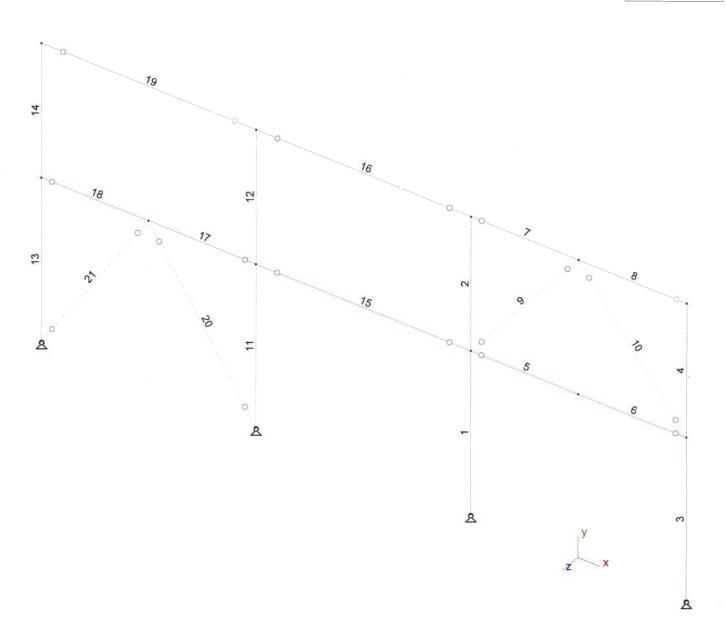
TS 6x 3x3/8: (3) (3/4") \$ BOLTS (A325) VBOLTS = (3)(17.9) \$= 72 KIPS < Fy A38= 203 KIPS, N.(-...

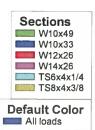
Batasaan Structural Engineers Inc.	www.peopaipoore.com
Peterson Structural Engineers, Inc.	www.pachymeera.com

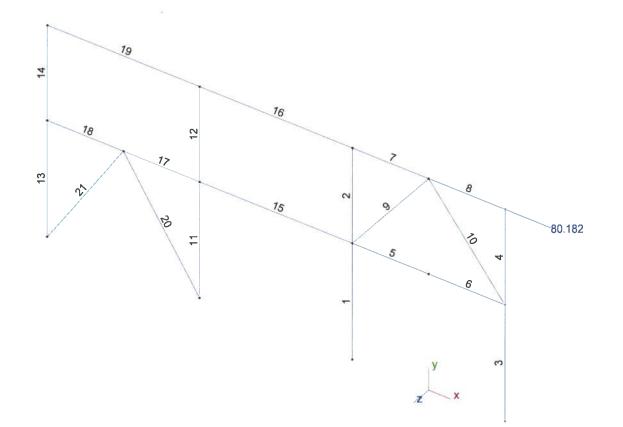
project	16-150



date


designer JSG


sheet 7


of

